Machine learning approach to understand the causality between solitary perturbation and edge confinement collapse in the KSTAR tokamak

J.E. Lee¹, P. H. Seo¹, J.G. Bak²,³, and G.S. Yun¹

¹ POSTECH, Korea ² NFRI, Korea ³ KFE, Korea

jieun_lee@postech.ac.kr

Abstract

- Solitary perturbations (SPs) are detected within ~ 100 μs prior to the edge pedestal collapse in H-mode plasmas, which puts forward SP as a potential candidate for the edge pedestal collapse trigger.
- We have constructed an automatic SP identification model based on a convolutional deep neural network to enable a statistical study on the concurrence of SP and edge pedestal collapse.
- We applied the developed model to a large amount of data and confirmed that the complete collapse at the plasma boundary always involves the emergence of SP.

Solitary Perturbation (SP)

- SP, localized in the poloidal direction, appear mostly tens of μs before the onset of the edge pedestal collapse.
- SP persists a few tens of μs to hundreds of μs without a noticeable change in shape.
- SP is clearly distinguished from ELM by spatial structure, amplitude, and flow velocity.

Development of the SP identification model

- **Input data**
 - Raw data of toroidal Mirnov coils
 - Toroidal array of Mirnov coils on KSTAR: 19
 - Time: 400 (400 μs, 1 MHz sampling freq.)
- **Output data**
 - SP probability (1 = SP, 0 = no SP)
 - Time: 400 (400 μs, 1 MHz sampling freq.)

- **Network architecture**
 - 11 network layers:
 - 7 Convolution + 3 Max-pooling + 1 Linear
 - Padding:
 - Circular padding (coll dimension)
 - Zero padding (time dimension)
- **Training of the model**
 - Training dataset: 140 sequential data
 - 2015-2017 KSTAR discharges
 - 100 positive examples (w/ collapse and SP)
 - 20 negative examples (w/o collapse and SP)
 - 20 synthetic collapse examples (white noise × envelope of Mirnov signal)
 - Supervised learning:
 - Minimization of errors between network output and correct answer

Performance of the SP identification model

- **Test of the model**
 - Test dataset: 50 sequential data (2015-2017 KSTAR discharges)
 - 26 positive examples, 12 negative examples, 12 synthetic collapse examples
- **Three metrics to evaluate the model**
 - **Per-frame accuracy (AF):** The proportion of correct prediction of SP per frame
 - **Per-sequence accuracy (AS):** The proportion of correct prediction of SP per sequence
 - **Average precision (AP):** Mean precision over all possible threshold weighted by recall
- **Quantitative performance of the model**
 - Threshold for the SP presence in time frame: 0.5
 - Threshold for the SP presence in sequence (yₚ): 25
 - AF for a trivial model which predicts a non-SP for every temporal frame is 82.5%

Qualitative validation by visualization

- **Gradient based visualization technique**
 - Our Network is approximated by the 1st order Taylor expansion
 - The model predicts SPs by recognizing toroidally shifted SP patterns.

Statistical analysis of the pedestal collapse-SP co-occurrence

- **Statistical analysis data**
 - 2018 KSTAR discharges
 - 20540, 20660, 21087, 21207
- **Region Sequence**
 - 1 (Large collapse w/ SP) 176
 - 2 (Large collapse w/o SP) 0
 - 3 (no large collapse w/o SP) 18263
 - 4 (no large collapse w/ SP) 13

The complete edge pedestal collapse always involves the emergence of SP → Studying the effect of SP on the edge pedestal collapse is essential for successful operation of fusion devices

Acknowledgements

This work was supported by the NRF of Korea under grant No. NRF-2019M1A7A1A03088456. JL acknowledges the career development grant (No. WIST-2020-202) from the Center for WISIT, funded by the MSIT. GY acknowledge the support by MSIT under ITP grant No. 2019-0-01906.