Development and Implementation of Integrated *q***-profile**+ β_N **Feedback Control Strategies for Advanced Scenarios in EAST**

E. Schuster¹, H. Wang¹, Z. Wang¹, Y. Huang², Z. Luo², B. Xiao², Q. Yuan², J. Barr³, D.A. Humphreys³, A.W. Hyatt³, M.L. Walker³, W.P. Wehner³

¹ Lehigh University, Bethlehem, Pennsylvania 18015, USA
 ² Institute of Plasma Physics (CAS), Hefei, P. R. of China
 ³ General Atomics, San Diego, California, USA

E-mail: *schuster@lehigh.edu*

Presented at the IAEA Fusion Energy Conference Virtual Meeting, May 10-15, 2021

Lehigh University Plasma Control Laboratory

Work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences under Awards DE-SC0010537, DE-SC0010685, and by the National Magnetic Confinement Fusion Science Program of China under Award 2017YFE0301300.

1/25

Need for Advanced Long-Pulse Scenario Control in EAST

- "Advanced Tokamak" (AT) operational goals for EAST include:
 - Steady-state operation
 - High-performance operation (high β , high q_{min} , etc.)
 - MHD-stable operation
- Active, feedback control of the current density profile, as well as of other plasma kinetic profiles and scalars, can play critical role in achieving these AT operational goals.

 High dimensionality 	
* Nonlinearity	Model-based Control Design
* Magnetic/kinetic coupling	

• First-principles-driven (FPD) PDE model: Mix of widely accepted first-principles laws and control-oriented models for transport/sources by exploiting both empirical (from physical observations) and analytical scalings as well as neural-network accelerated models.

Modeling Poloidal-Flux+Energy Evolution for Control Design

• Magnetic Flux (ψ) Dynamics Modeled by 1D Diffusion Equation

$$\frac{\partial \psi}{\partial t} = \eta(T_e) \begin{bmatrix} 1\\ \mu_0 \rho_b^2 \hat{F}^2 & \frac{1}{\hat{\rho}} & \frac{\partial}{\partial \hat{\rho}} & \left(\hat{\rho} \hat{F} \hat{G} \hat{H} & \frac{\partial \psi}{\partial \hat{\rho}} \right) + R_0 \hat{H} & \leq \overline{j_{NI} \cdot \overline{B}} \\ \hline B_{\phi,0} & \left(\frac{\partial \psi}{\partial \hat{\rho}} \right) = 0, \quad \frac{\partial \psi}{\partial \hat{\rho}} \\ \hline B_{\phi,0} & \left(\frac{\partial \psi}{\partial \hat{\rho}} \right) = 0, \quad \frac{\partial \psi}{\partial \hat{\rho}} \\ \hline B_{\phi,0} & \left(\frac{\partial \psi}{\partial \hat{\rho}} \right) = 0, \quad \frac{\partial \psi}{\partial \hat{\rho}} \\ \hline B_{\phi,0} & \left(\frac{\partial \psi}{\partial \hat{\rho}} \right) \\ \hline B_{\phi,0} & \left(\frac{\partial \psi}{\partial \hat{\rho}} \right) \\ \hline B_{\phi,0} & \left(\frac{\partial \psi}{\partial \hat{\rho}} \right) = 0, \quad \frac{\partial \psi}{\partial \hat{\rho}} \\ \hline B_{\phi,0} & \left(\frac{\partial \psi}{\partial \hat{\rho}} \right) \\ \hline B_{\phi,0} & \left(\frac{\partial \psi}{\partial \hat{\rho}} \right) \\ \hline B_{\phi,0} & \left(\frac{\partial \psi}{\partial \hat{\rho}} \right) \\ \hline B_{\phi,0} & \left(\frac{\partial \psi}{\partial \hat{\rho}} \right) \\ \hline B_{\phi,0} & \left(\frac{\partial \psi}{\partial \hat{\rho}} \right) \\ \hline B_{\phi,0} & \left(\frac{\partial \psi}{\partial \hat{\rho}} \right) \\ \hline B_{\phi,0} & \left(\frac{\partial \psi}{\partial \hat{\rho}} \right) \\ \hline B_{\phi,0} & \left(\frac{\partial \psi}{\partial \hat{\rho}} \right) \\ \hline B_{\phi,0} & \left(\frac{\partial \psi}{\partial \hat{\rho}} \right) \\ \hline B_{\phi,0} & \left(\frac{\partial \psi}{\partial \hat{\rho}} \right) \\ \hline B_{\phi,0} & \left(\frac{\partial \psi}{\partial \hat{\rho}} \right) \\ \hline B_{\phi,0} & \left(\frac{\partial \psi}{\partial \hat{\rho}} \right) \\ \hline B_{\phi,0} & \left(\frac{\partial \psi}{\partial \hat{\rho}} \right) \\ \hline B_{\phi,0} & \left(\frac{\partial \psi}{\partial \hat{\rho}} \right) \\ \hline B_{\phi,0} & \left(\frac{\partial \psi}{\partial \hat{\rho}} \right) \\ \hline B_{\phi,0} & \left(\frac{\partial \psi}{\partial \hat{\rho}} \right) \\ \hline B_{\phi,0} & \left(\frac{\partial \psi}{\partial \hat{\rho}} \right) \\ \hline B_{\phi,0} & \left(\frac{\partial \psi}{\partial \hat{\rho}} \right) \\ \hline B_{\phi,0} & \left(\frac{\partial \psi}{\partial \hat{\rho}} \right) \\ \hline B_{\phi,0} & \left(\frac{\partial \psi}{\partial \hat{\rho}} \right) \\ \hline B_{\phi,0} & \left(\frac{\partial \psi}{\partial \hat{\rho}} \right) \\ \hline B_{\phi,0} & \left(\frac{\partial \psi}{\partial \hat{\rho}} \right) \\ \hline B_{\phi,0} & \left(\frac{\partial \psi}{\partial \hat{\rho}} \right) \\ \hline B_{\phi,0} & \left(\frac{\partial \psi}{\partial \hat{\rho}} \right) \\ \hline B_{\phi,0} & \left(\frac{\partial \psi}{\partial \hat{\rho}} \right) \\ \hline B_{\phi,0} & \left(\frac{\partial \psi}{\partial \hat{\rho}} \right) \\ \hline B_{\phi,0} & \left(\frac{\partial \psi}{\partial \hat{\rho}} \right) \\ \hline B_{\phi,0} & \left(\frac{\partial \psi}{\partial \hat{\rho}} \right) \\ \hline B_{\phi,0} & \left(\frac{\partial \psi}{\partial \hat{\rho}} \right) \\ \hline B_{\phi,0} & \left(\frac{\partial \psi}{\partial \hat{\rho}} \right) \\ \hline B_{\phi,0} & \left(\frac{\partial \psi}{\partial \hat{\rho}} \right) \\ \hline B_{\phi,0} & \left(\frac{\partial \psi}{\partial \hat{\rho}} \right) \\ \hline B_{\phi,0} & \left(\frac{\partial \psi}{\partial \hat{\rho}} \right) \\ \hline B_{\phi,0} & \left(\frac{\partial \psi}{\partial \hat{\rho}} \right) \\ \hline B_{\phi,0} & \left(\frac{\partial \psi}{\partial \hat{\rho}} \right) \\ \hline B_{\phi,0} & \left(\frac{\partial \psi}{\partial \hat{\rho}} \right) \\ \hline B_{\phi,0} & \left(\frac{\partial \psi}{\partial \hat{\rho}} \right) \\ \hline B_{\phi,0} & \left(\frac{\partial \psi}{\partial \hat{\rho}} \right) \\ \hline B_{\phi,0} & \left(\frac{\partial \psi}{\partial \hat{\rho} \right) \\ \hline B_{\phi,0} & \left(\frac{\partial \psi}{\partial \hat{\rho} \right) \\ \hline B_{\phi,0} & \left(\frac{\partial \psi}{\partial \hat{\rho} \right) \\ \hline B_{\phi,0} & \left(\frac{\partial \psi}{\partial \hat{\rho} \right) \\ \hline B_{\phi,0} & \left(\frac{\partial \psi}{\partial \hat{\rho} \right) \\ \hline B_{\phi,0} & \left(\frac{\partial \psi}{\partial \hat{\rho} \right) \\ \hline B_{\phi,0} & \left(\frac{\partial \psi}{\partial \hat{\rho} \right) \\ \hline B_{\phi,0} & \left(\frac{\partial \psi}{\partial \hat{\rho}$$

Profiles Consistent with Stored Energy (W) Dynamics Modeled by 0D Power Balance

$$\frac{dW}{dt} = -\frac{W}{\tau_W} + P_{tot}(P_{tot} = P_{aux} + P_{ohm} + P_{rad}) \Rightarrow \beta_N = \frac{a(2W/3)}{I_p B_{\phi,0}/(2\mu_0)}, \tau_W \propto I_p^{\alpha_s} P_{tot}^{-\beta_s} \bar{n}_e^{\gamma_s}$$
(3)

Lehigh University Plasma Control Laboratory

Modeling Poloidal-Flux+Energy Evolution for Control Design

Electron Temperature Profile Modeled by Heat Transport Equation
 Assuming diffusion is dominant transport mechanism, the T_e dynamics is given by

$$\frac{3}{2}\frac{\partial}{\partial t}\left[n_{e}T_{e}\right] = \frac{1}{\rho_{b}^{2}\hat{H}}\frac{1}{\hat{\rho}}\frac{\partial}{\partial\hat{\rho}}\left[\hat{\rho}\frac{\hat{G}\hat{H}^{2}}{\hat{F}}\left(\chi_{e}(\cdot)n_{e}\frac{\partial T_{e}}{\partial\hat{\rho}}\right)\right] + Q_{e}^{ohm} + Q_{e}^{rad} + \sum_{i}Q_{e_{i}}^{aux}$$
(4)

with boundary conditions $\frac{\partial T_e}{\partial \hat{\rho}}(0,t) = 0$, $T_e(1,t) = T_{e,bdry}$, and where $Q_{e_i}^{aux} = Q_i^{dep}(\hat{\rho})P_{aux_i}(t)$

- Thermal conductivity χ_e can be modeled as an analytical scaling law.
- 2 Thermal conductivity χ_e can be modeled as an empirical scaling law, e.g. $\chi_e = k_{\chi_e} T_e^{\gamma} n_e^{\nu} q^{\mu} s^{\pi}$
 - + Multi-linear regression from χ_e computed by physics models (TRANSP) to determine structure.
 - + Nonlinear optimization to determine constants:

$$\min_{\theta} J, \quad J = \int_{t_0}^{t_f} \left\{ \sum_{i=1}^N \alpha \left[q^{exp}(\hat{\rho}_i, t) - q(\hat{\rho}_i, t) \right]^2 + \beta \left[T_e^{exp}(\hat{\rho}_i, t) - T_e(\hat{\rho}_i, t) \right]^2 \right\} dt, \quad \theta = [k_{\chi_e} \gamma \nu \mu \pi].$$

- **(3)** Thermal conductivity χ_e can be modeled as state model, e.g. $\chi_e = f(T_e, n_e, q, s)$
 - + Machine Learning techniques \rightarrow Neural Network training (NEO, TGLF, MMM, ...)

NOTE: Sources $\frac{\langle \bar{j}_i \cdot \bar{B} \rangle}{B_{\phi,0}}$ and $Q_{e_i}^{aux}$ can also be modeled using Machine Learning.

Lehigh University Plasma Control Laboratory

Plasma Response Characterization Experiments for Model Tailoring

- Several plasma-response characterization experiments were conducted before the q-profile+ β_N feedback-control experiments.
- Plasma-response data was generated by exciting the plasma through different available actuators.
- Figure shows typical response of q profile at two spatial locations ($\hat{\rho} \in [0.05, 0.3]$) in response to open-loop excitation of P_{LH2} (4.60 GHz LHW source power) during flattop in shot #77643.
- This data was used to tailor the control-oriented model (1)-(3) to the EAST scenario of interest.

This tailored control-oriented model was used in this work to optimize the gains of the employed fixed-structure controller and to test the PCS implementation of the control algorithm in closed-loop Simserver simulations before experiments

Control-oriented Modeling Enabled by TRANSP Prediction/Analysis

- TRANSP simulations are run in both interpretative and predictive modes to produce plasma response data for the development of lower-complexity, faster, control-oriented models.
- Equilibrium reconstruction constrained by POlarimeter-INTerferometer (POINT) plays critical role in comparing model-predicted q-profile+ β_N evolutions with experimental data.

First-principles-driven Models are Engine of COTSIM

LU Control-Oriented Transport SIMulator (COTSIM)

- 1D transport code
- Matlab/Simulink-based
- Control-design friendly
- Modular configuration
- Variable physics complexity
- Closed-loop capable
- Optimizer wrappable
- \bullet Equilibrium: Prescribed \rightarrow 2D Solver
- Fast (offline simulations)
- Very fast (real-time control)

NN models: NUBEAM, MMM

• NN model for LHCD in EAST (MIT)

Fixed-structure PID-type Feedback Control Algorithm

• The feedback (FB) control algorithms use a proportional-integral-derivative (PID) structure, i.e.

$$u^{FB}(t) = K_P e(t) + K_I \int_0^t e(t) + K_D \frac{de(t)}{dt}$$
(5)

where the input/output vectors are defined as

$$u^{FB} = \begin{bmatrix} I_p^{FB} & P_{LH1}^{FB} & P_{LH2}^{FB} & P_{NB11}^{FB} & P_{NB12}^{FB} & P_{NB13}^{FB} & P_{NB14}^{FB} \end{bmatrix}^T, \qquad e = \begin{bmatrix} q(0.1) - q^{tgt}(0.1) \\ q(0.5) - q^{tgt}(0.5) \\ q(0.9) - q^{tgt}(0.9) \\ \beta_N - \beta_N^{tgt} \end{bmatrix}.$$
(6)

- Actuators considered in this work: total plasma current I_p , 2.45 GH_z LWH source power P_{LH1} , 4.6 GH_z LHW source power P_{LH2} , individual co-current NBI powers (P_{NBI1} (NBI1L), P_{NBI2} (NBI1R)), and individual counter-current NBI powers (P_{NBI3} (NBI2L), P_{NBI4} (NBI2R)).
- *K_P*, *K_I*, *K_D* are gain matrices optimized in simulations based on control-oriented model (1)-(3).
- The superscript *tgt* denotes target values for the to-be-controlled plasma properties.

Model-based PID Gain Optimization Before Experimental Testing

Lehigh University Plasma Control Laboratory

DIII-D/LU Profile Control Category Has Been Coded in EAST PCS

- $\bullet\,$ Profile control algorithm has been coded by LU Plasma Control Group: DIII-D $\rightarrow\,$ EAST
- Interfaces have been coded by EAST PCS Team:
 - Interface with real-time pEFIT + (POINT)
 - Interface with actuators. Actuators must be under PCS.
 - Interface with user data.

Profile/Scalar Control Configuration in Profile Control Category

- u^{FF} : feedforward control, u^{FB} : feedback control (output of controller K), u_d : input disturbance.
- $u^{FF} = u_r + u_c$, u_r : input reference, u_c : output of feedforward compensator.
- s: output of an optional anti-windup (AW) compensator (signal added only when AW is on).
- y: overall plant output, y_d : output disturbance, y_r : output reference (associated with u_r).
- y_t^{FB} : reference-modified output target (linearized-model-based controllers), y_t : output target.

Profile/Scalar Control Configuration in Profile Control Category

• One controller implemented in Profile Control category has linear state-space representation:

$$x_{k+1} = Ax_k + B \begin{bmatrix} y_t - y_r \\ y + y_d - y_r \end{bmatrix}_k, \qquad u_k^{FB} = Cx_k + D \begin{bmatrix} y_t - y_r \\ y + y_d - y_r \end{bmatrix}_k,$$
(10)

- IMPORTANT: After time discretization, proposed controller (5) can be implemented in the Profile Category by using this linear discrete-time state-space representation.
- Controller (10) is complemented by an anti-windup compensator in discrete-time state-space form:

$$x_{k+1}^{aw} = A_{aw} x_k^{aw} + B_{aw} \left[sat(u) - u \right]_k, \qquad s_{k+1} = C_{aw} x_k^{aw} + D_{aw} \left[sat(u) - u \right]_k, \tag{11}$$

The saturation function is defined as

$$sat(\cdot) = \begin{cases} (\cdot)^{min} & \text{if } (\cdot) < (\cdot)^{min} \\ (\cdot) & \text{if } (\cdot)^{min} \le (\cdot) \le (\cdot)^{max} \\ (\cdot)^{max} & \text{if } (\cdot) > (\cdot)^{max} \end{cases}$$

Pulse Width Modulation for the Command of NBI Power

A pulse width request $t_{PW}^{request}$ is first defined based on a chosen averaging time interval t_{av} and a given duty cycle D_c defined by the requested/maximum NBI power ratio, i.e.

$$t_{PW}^{request} = D_c t_{av}, \qquad D_c = rac{P_{NBI}}{P_{NBI}^{max}}.$$

Algorithm below guarantees fulfillment of minimum on/off times:

Lehigh University Plasma Control Laboratory

(12)

Simserver Simulations Enable Debugging Before Experiments

- Connection is built between response model (1)-(3) (ψ , $W \rightarrow q$, β_N dynamics) and PCS
- Enables debugging of the algorithm implementation in the Profile Control category
- Validates real-time computations carried out by the implemented control algorithm
 - Uses model-based predicted diagnostic data before experimental testing

Simultaneous Feedback *q*-profile Regulation at Edge & Core Was Demonstrated for the First Time by Using 4.60 GHz LHW Source

- Tracking of desired *q* profile at $\hat{\rho} = 0.1$ and $\hat{\rho} = 0.9$ is achieved by using I_p and P_{LH2} actuation.
- Feedback control (FB) is turned on for 2s < t < 8s (indicated by light-gray background in figures).
- Feedforward-control components are modified by feedback controller so that actual evolutions (solid-blue) track targets (dashed-red).
- Target evolutions for the *q* profile at these 2 points were obtained from actual shot to ensure feasibility.

Simultaneous Feedback *q*-profile Regulation at Edge & Core Was Demonstrated for the First Time by Using 4.60 GHz LHW Source

- Feedforward (FF) control (dashed- orange lines) is corrected by feedback (FB) controller to produce requested actuation (dashed-green lines).
- There is a bias between requested (dashed-green lines) and delivered (solid-blue lines) LHW power due to the way this actuator is controlled.
- In spite of bias, the FB controller is capable of tracking targets due to presence of integral action.
- The requested actuation (dashed-green lines) is the result of constraining the actuation computed by the FB controller (solid-yellow lines) by the physical limits associated to the different actuators.
- These saturation limits (dashed-black lines) were not active in this discharge.

New Beam Power Modulation Algorithm Implemented in PCS for Simultaneous *q*-profile $+\beta_N$ Control Showed Good Average Tracking

Lehigh University Plasma Control Laboratory

Model-Based Scenario Control in EAST

New Beam Power Modulation Algorithm Implemented in 2018 for Simultaneous *q*-profile + β_N Control Showed Good Average Tracking

- Tracking of desired q profile at $\hat{\rho} = 0.1$, $\hat{\rho} = 0.9$ and β_N is achieved by using I_p , P_{LH2} and P_{NB11} actuation
- PWM algorithm (12) was used with mixed results to command the NBI1L source ($P_{NBI1} = P_{NBI1L}$)
- The targets are tracked in average but the PWM algorithm introduces significant perturbations due to:
 - + Minimum on/off time constraints significantly impacting this relatively low- β_N plasma
 - + Detected implementation issues: i- FF control set to zero, ii- time delay introduced by PWM algorithm

Simultaneous Feedback *q*-profile Regulation at Three Points Was Demonstrated for the First Time by Using two LHW Sources

Lehigh University Plasma Control Laboratory

Model-Based Scenario Control in EAST

Simultaneous Feedback *q*-profile Regulation at Three Points Was Demonstrated for the First Time by Using two LHW Sources

- Tracking of desired q profile at $\hat{\rho} = 0.1$, $\hat{\rho} = 0.5$, $\hat{\rho} = 0.9$ is achieved by using I_p , P_{LH1} , and P_{LH2} actuation
- Solid-magenta lines show q-profile evolutions at these points for feedforward-only EAST shot #95176.
- FF control needs to be modified by FB control for actual (solid-blue) profile to track target (dashed-red)
- Saturation in the 4.60 GHz LWH power (P_{LH2}) is briefly observed at the beginning of FB-on window.
- Around 1MW of ECRF H&CD power was used in this and subsequent shots to keep plasma in H-mode.

Simultaneous Feedback Regulation of Two Points of the q Profile and β_N Was Experimentally Tested by Using two LHW Sources

Lehigh University Plasma Control Laboratory

Simultaneous Feedback Regulation of Two Points of the q Profile and β_N Was Experimentally Tested by Using two LHW Sources

- Tracking of desired q profile at $\hat{\rho} = 0.1$, $\hat{\rho} = 0.9$ and β_N is achieved by using I_p , P_{LH1} , and P_{LH2} actuation
- Solid-magenta lines show q-profile evolutions at these points for feedforward-only EAST shot #95176.
- FF control needs to be modified by FB control for actual (solid-blue) profile to track target (dashed-red)
- Saturation in the 2.45 GHz LWH power (P_{LH1}) is observed after around 5 sec. as the combined q-profile+ β_N controllers tries to track the β_N target more closely while controlling q at $\hat{\rho} = 0.1$, $\hat{\rho} = 0.9$.

Simultaneous Feedback *q*-profile Regulation at Three Points Was Demonstrated Even Under the Presence of Input Disturbances

Lehigh University Plasma Control Laboratory

Simultaneous Feedback *q*-profile Regulation at Three Points Was Demonstrated Even Under the Presence of Input Disturbances

- Tracking of desired q profile at $\hat{\rho} = 0.1$, $\hat{\rho} = 0.5$, $\hat{\rho} = 0.9$ is achieved by using I_p , P_{LH1} , and P_{LH2} actuation

- Solid-magenta lines show q-profile evolutions at these points for feedforward-only EAST shot #95176.
- FF control needs to be modified by FB control for actual (solid-blue) profile to track target (dashed-red)
- Shot similar to #95183 but introducing 0.3 MW perturbation in the 4.60 GHz LWH power (P_{LH2}) for $t \in [4, 6]$.
- FB controller starts reducing request of LHW power after actual (solid-blue line) q values at $\hat{\rho} = 0.1$ and $\hat{\rho} = 0.5$ exceed targets. Tracking improvement is limited by lower-limit saturation of P_{LH2} after 6 sec.

Lehigh University Plasma Control Laboratory

Development and Implementation of Integrated *q***-profile**+ β_N **Feedback Control Strategies for Advanced Scenarios in EAST**

- Successful q-profile+ β_N control was demonstrated for the first time in EAST
- Task 1: Number of actuators under the Profile Category in the PCS should be increased by:
 - Enhancing the NBI PWM algorithm and testing it in H-mode plasmas
 - Incorporating the command of ECRF and ICRF H&CDs
- Task 2: The quality of the real-time reconstruction of the *q* profile needs to be improved by constraining pEFIT with POINT measurements
- Task 3: The accuracy of the control-level models used for control design should be enhanced by further developing control-physics understanding and continuing validation efforts
- Completion of these tasks will further augment capability of tightly regulating *q*-profile and β_N to routinely enable access to long-pulse, disruption-free, high-performance operation in EAST
- It is anticipated that this augmented control capability will be achieved by employing more sophisticated, model-based, optimal, control algorithms.