H-MODE OPERATION IN HELIUM PLASMAS WITH PURE RADIO FREQUENCY HEATING AND ITER-LIKE TUNGSTEN DIVERTOR ON EAST

B. ZHANG, X. GONG, J. QIAN, R. DING, J. HUANG, Y.W. SUN, X. GU, Y.Y. LI, W. GAO, Y.W. YU, M.H. LI, Z. SUN, G.Q. ZHONG, Y.M. DUAN, S.T. MAO, L. WANG, F. DING, Q. ZANG, Q. MA, J.W. LIU, Y.J. CHEN and the EAST team

Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China *binzhang@ipp.ac.cn*

```
ID: 917
```

ABSTRACT

- Concentration of helium (C_{He}) in the plasma is confirmed to play a critical role in H-mode operation
- At lower C_{He} , EAST achieved the stationary Type-I ELMy H-mode over 80 energy confinement time with the energy confinement slightly above $H_{98,y2}$ scaling ($H_{98,y2}$ ~1.1) by using pure RF power
- ELM suppression is demonstrated by n=1 resonant magnetic perturbation (RMP) coils

• The density dependence of H-mode threshold power (P_{thr}) exhibits a minimum of P_{thr} at $n_{e,min} \approx 4 \times 10^{19} \text{m}^{-3}$

BACKGROUND

- H-mode operation in hydrogen (H) and/or helium (He, refer to the helium-4 isotope) plasmas is foreseen for ITER early non-nuclear operational phase
- Determining the requirements for L-H transition and predicting the Hmode performance in H and He plasmas under ITER relevant conditions is of high importance for completing ITER research plan
- He experiments results reported show large variation on $P_{\rm thr}$ and H-mode performance, which makes it a challenge to generate a global $P_{\rm thr}$ and confinement scaling expression for He plasmas
 - Earlier experiments ~40% higher P_{thr} in He than that of D
 - \blacktriangleright Later results show a similar P_{thr} in both of He and D
 - ➢ H-mode energy confinement lower in He compared to D
 - > Variations of ELM frequency in He

H-MODE OPERATION AT HIGH CONCENTRATION

- Repetitive transition between ELMy H-mode and ELM-absent high confinement mode at constant power injection
 - \succ ELM-absent confinement is comparable to H-mode at similar C_{He}
- ✓ Comparing to the stationary heat flux, ELM-averaged H-mode heat flux was much higher, increased by a factor of 1.5

FIG. 4. Comparison of density profile (a) and divertor heat flux (b) at ELMabsent phase (red) and H-mode (blue)

IMPACT OF HELIUM CONCENTRAION

- ✓ Main plasma parameters $B_T = 1.8-2.4T$, $I_p = 0.4-0.5MA$, $n_e = 2-6 \times 10^{19} \text{m}^{-3}$, $S = 41-43 \text{m}^2$ at USN configuration with fav. B_T
- ✓ Radio-frequency (RF) wave as heating and current drive techniques
 - ➢ lower hybrid (LH) wave of both 2.45 & 4.6GHz
 - electron cyclotron (EC) of 140GHz working at X2 mode
 - ➢ icrf power of 34MHz via H minority
- ✓ Helium concentration (C_{He}) is ranging from 40% to 80%
- $\checkmark P_{\text{thr}}$ is the net power $P_{\text{thr}} = P_{\text{Ohm}} + P_{\text{abs}} P_{\text{rad}} dW_{\text{MHD}} / dt$

FIG. 1. H-mode threshold

FIG. 2. Density dependence FIG. 3. ELM frequencies as a

IMPACT OF HE CONCENTRATION ON I_MODE OPERATION

FIG. 5. Experimental L-H P_{thr} values obtained in EAST helium discharges heated by LHCD, ECRH and ICRH shown against \overline{n}_e .

CONCLUSION

• Concentration of helium is found to be a key parameter in H-mode operation

- ✓ The normalized threshold power decreases from 2 to 1.2 with plasma density in the range of 0.2-0.4×10²⁰m⁻³, which is independent of magnetic field
- ✓ $I_p = 0.5$ MA, $B_T = 2.4$ T, a critical density of about 0.4×10^{20} m⁻³ identified
 - ➢ decrease of both $n_{e,\min}$ and P_{thr} with decreasing plasma current
 - Follow the scaling with a multiple factor of ~1.2 at high-density side
 - clear upwards deviation from the ITPA scaling at the low-density side

power normalized to theof H-mode energyfunction of heliumscaling value as a function ofconfinement time for Heconcentrationhelium concentrationand D plasmasconcentration

- ✓ L-H transition threshold power in He plasmas is higher with respect to D ✓ P_{thr} linearly increases with the He concentration
- ✓ τ_E is found ~30% lower in He plasmas compared to D plasmas
 ✓ ELM frequency was found to increase when increasing C_{He}.

- ► L-H power threshold
- ➢ ELM frequency
- Energy confinement
- Density dependence of the required power to enter H-mode exhibits a minimum threshold power at $\bar{n}_{e,\min} \approx 0.4 \times 10^{20} \text{m}^{-3}$
- ELM suppression by n=1 RMP with pure RF-heating is demonstrated for the first time in helium plasma on EAST

ACKNOWLEDGEMENTS / REFERENCES

This work was supported by the National Natural Science Foundation of China under Contract No. 12005262, the National MCF Energy R&D Program (2019YFE03040000), and the Users with Excellence Program of Hefei Science Center CAS under Grant No. 2020HSC-UE009. This work was carried out under the Framework of Sino-French Fusion Energy centeR (SIFFER).