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1. Introduction
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1. Motivation:

 Alfvén eigenmodes (AE) in the high-performance discharges lead to

I. Redistribution of core fast-ion pressure  Degradation of fusion yield

II. Fast-ion loss  Damage on the first-wall

 Need of AE mitigation to avoid performance degradation in the KSTAR advanced scenarios.

2.  Experimental Observations:

 Experimental observations on the TAE mitigations have drawn the attention to significant enhancement of performance in the advanced 
operation scenarios (high 𝛃𝛃P).

 Off-axis co-ECCD applications in the high qmin (or q0) scenario show TAE mitigation (for several tens of 𝞃𝞃E), resulting in fast-ion confinement 
enhancement

 Primary mechanism of AE mitigation is based on Alfven continuum damping.

 ECCD scan is one of promising techniques to control the TAEs

BT0 = 1.9T (18597), 1.8 T (18602),  IP = 0.4 MA
NBI1-A/B/C = 100/70/70 keV (3.8 MW), 
PEC = 0.7 MW (105 GHz, ZEC ~ 0cm)

 Same heating power, but different injection location of ECCD
 Proper ECCD injection location  TAE mitigation  achievement of steady-state high βP (~ 3.0)  

discharge (18602).
 Increase of neutron rate, stored energy, βP with TAE mitigation

18602 1.8T
18597 1.9T
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TAE activities (n= 1 - 5)

High βP discharge w/ TAE suppression by ECH
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Magnetics (MC1T05), KSTAR 18597
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ECH-off in 
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1.2. Previous study: AE suppression by co-ECCD scan in high qmin (q0 > 1.5) 
discharge

q-profile

NB1-A/B @ 80 keV / 90 keV (2.9 MW), co-ECCD (105GHz, 0.7MW, 𝜙𝜙tor = +20°) scan:  ZEC = +30cm  +15cm (during 5.0 – 5.5s) :
 ZEC approaches +15cm.  Alfvénic activity is disappeared and the overall performance increase  Stored energy and βN:  ~ 25% increase,  

Neutron rate :  almost doubled
 Far-off axis ECCD touches TM, but not affect to AEs. Optimal deposition needed!

3.1. Experimental Results

 Both co- & couter-ECCD cases can mitigate or suppress the TAEs in elevated q0 scenario.
 Primary control mechanism: Increase in continuum damping by tailoring core q-profile 

shape
 Overall plasma 𝛃𝛃 increases.  Beneficial to TAE stabilization (same in high βP case)
 Co-ECCD is superior than counter-ECCD to control TAEs for over tens of 𝛕𝛕E.
 Counter-ECCD has shown the possibility of TAE control under the elevated q0 scenario.
 Unexpected excitation of n=2 EPM in counter-ECCD-assisted mitigation stage prevents 

the enhancement of the plasma performance (including core fast-ion pressure).

3.2. Profiles (safety factor, fast-ion / total pressure, shear, … )

 Central Ti change is not so significant in 22937, 22939. 
 Thermal-ion Landau damping seems to be weak in 
TAE-mitigation stage.

 Normalized pressure gradient (α) > Critical level (αcrit) 
 Stabilization in the enhanced β (suppression of 
core TAEs)

 Fast-ion pressure increases as the AEs are mitigated.
 TRANSP calculated Dfast for the co-ECCD-assisted TAE 

mitigation case is close to the classical transport.

Alfvén gaps move into the region close to the core. More chance to destabilize the TAEs, enhancing fast-ion transport.

1.1. Previous study: AE suppression by co-ECCD scan in high 𝛃𝛃P long-pulse 
discharges enhances the plasma performance

2. Experimental Setup (Investigations on Co- & Counter-ECCD applicability)

EC-wave 
launcher

IPBT -10cm < ZEC < +10cm

TAE control 
(mirror 

steering)
(3.0 – 10.0s) 

2nd harmonic electron 
cyclotron resonance layer 
(Rres ~ 1.73 m)

Co-ECCD
Counter-ECCD

NBI1 
(tangential, on-
axis)

 Experimental condition:
(BT, IP) = (1.8 T,  0.5 MA), q0 > 1.5 @ flat-top,  li ~ 0.75 – 0.85

Heating:  NB1-A & B & C (70 - 90 keV), PNB ~ 3.4 – 4.5 MW, PECCD ~ 0.7 – 1.3 MW

1. co-ECCD (𝟇𝟇tor ~ 20°, off-axis) scan (-10cm < ZEC < +10cm) across the possible mode location by steering mirror to see 
if AEs are excited or mitigated. Neutron rate signal is an indicator to optimize the EC-wave deposition 
location (ZEC).

2. Two EC-wave launchers:  1 central ECH (fixed) & 1 co- and counter-ECCD (scanning)

AE-active 
(ρpol,ECCD ~ 0.56)

AE mitigation
(ρpol,ECCD ~ 0.29)

Intermediate 
change in AEs

Magnetics (MC_toroidal), KSTAR 21695
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PNB ~ 3.4 MW (on-axis, co-NBI),  PEC ~ 1.3 MW Co-ECCD, 
𝜙𝜙tor,EC = +20°

Toroidal MC spectrogram

Toroidal mode amplitudes

PNB ~ 3.4 MW (on-axis, co-NBI),  PEC ~ 1.3 MW Counter-ECCD, 
𝜙𝜙tor,EC = −20°
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Toroidal MC spectrogram

Toroidal mode amplitudes
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 High q0 (> 1.5) & qmin, low li (~ 0.8) by mild off-axis ECCD provided good testbed for driving & controlling the AEs.
 Co-IP directional ECCD (0.7MW) mitigates AEs successfully in the high 𝝱𝝱P or high qmin scenarios of KSTAR Performance

enhancement, but the on-axis co-ECCD is not so effective.
 q0 drop (~2.0  ~1.5) and core q-profile shaping, core Te increase  Increase of continuum damping & β increase are

beneficial to increase whole dampingWeak AE activities & EP confinement enhancement
 Co-ECCD is better to control the TAEs by means of increasing continuum damping.
 Tearing-mode amplitude (small) can increase as ECCD approaches core, but AEs are mitigated without performance

degradation. (β ⇧, Neutron ⇧, core Te, Ti ⇧ ) However, in higher PNB (~ 4.3 MW), AE-control was lost by large-amplitude
TM. Dynamic control using the multiple launchers can be suggested.

 Not into the fast-ion profile stiffness since the PNB is ~ 3.0 MW in the previous works. PNB ~ 4.3 MW seems to be marginal.
Broadening beam-ion profile may be effective for reducing fast-ion drive.

DISCUSSIONS

unexpected chirping 
n=2 EPM during n=3 
TAE suppression in 
the counter-ECCD 
application

ECEI

 Co-ECCD (shot# 25846) suppresses TAEs in the 
elevated beam-power (PNB ~ 4.3 MW), however the 
control was lost due to tearing mode excitation.

 Excessive core total pressure gradient is a candidate 
cause.

 Need to investigate the TAE control without large-
amplitude tearing-modes.

+19cm > ZEC > +15cm

Performance enhancement 
during the ECCD scan

AE mitigation

KSTAR shot# 21695, PNB=2.9MW (co-tangential), PEC=0.7MW
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