

unexpected chirping

n=2 EPM during n=3

TAE suppression in

the counter-ECCD

application

Active Control of Toroidal Alfvén Eigenmodes Using the Electron Cyclotron Waves in KSTAR High-Performance Discharges

J. Kim¹, J. Kang¹, M.W. Lee¹, T. Rhee¹, J. Jo¹, J.H. Lee¹, M.J. Choi¹, M. Joung¹, M.H. Woo¹, J. Ko¹, M. Podestà², R. Nazikian², H. Han¹, J.M. Park³ and Y.-S. Na⁴

¹Korea Institute of Fusion Energy, Daejeon, Republic of Korea
 ²Princeton Plasma Physics Laboratory, Princeton, USA
 ³Oak Ridge National Laboratory, Oak Ridge, USA
 ⁴Department of Nuclear Engineering, Seoul National University, Seoul, Republic of Korea

<u>kimju@kfe.re.kr</u>

1. Introduction

1. Motivation:

3.1. Experimental Results

 $P_{NB} \sim 3.4$ MW (on-axis, co-NBI), $P_{EC} \sim 1.3$ MW Co-ECCD, $\phi_{tor,EC} = +20^{\circ}$ $P_{NB} \sim 3.4$ MW (on-axis, co-NBI), $P_{EC} \sim 1.3$ MW Counter-ECCD, $\phi_{tor,EC} = -20^{\circ}$

- Alfvén eigenmodes (AE) in the high-performance discharges lead to
 - I. Redistribution of core fast-ion pressure \rightarrow Degradation of fusion yield
 - II. Fast-ion loss \rightarrow Damage on the first-wall
- Need of AE mitigation to avoid performance degradation in the KSTAR advanced scenarios.
- 2. Experimental Observations:
 - Experimental observations on the TAE mitigations have drawn the attention to significant enhancement of performance in the advanced operation scenarios (high β_P).
 - Off-axis co-ECCD applications in the high q_{min} (or q₀) scenario show TAE mitigation (for several tens of τ_E), resulting in fast-ion confinement enhancement
 - Primary mechanism of AE mitigation is based on Alfven continuum damping.
 - ECCD scan is one of promising techniques to control the TAEs

1.1. Previous study: AE suppression by co-ECCD scan in high β_P long-pulse discharges enhances the plasma performance

Both co- & couter-ECCD cases can mitigate or suppress the TAEs in elevated q₀ scenario.
 Primary control mechanism: Increase in continuum damping by tailoring core q-profile shape

Overall plasma β increases. → Beneficial to TAE stabilization (same in high β_P case)
 Co-ECCD is superior than counter-ECCD to control TAEs for over tens of τ_F.

Counter-ECCD has shown the possibility of TAE control under the elevated q₀ scenario.
 Unexpected excitation of n=2 EPM in counter-ECCD-assisted mitigation stage prevents the enhancement of the plasma performance (including core fast-ion pressure).

3.2. Profiles (safety factor, fast-ion / total pressure, shear, ...)

(a) <u>q (safety factor)</u> ⁸ KSTAR 22939 <u>4.0s(TAE active)</u> <u>Co-ECCD</u> <u>5.6(TAE mitigated</u>)

q (safety factor ⁸ KSTAR 22937 Counter-ECCD

1.2. Previous study: AE suppression by co-ECCD scan in high q_{min} ($q_0 > 1.5$) discharge

NB1-A/B @ 80 keV / 90 keV (2.9 MW), co-ECCD (105GHz, 0.7MW, $\phi_{tor} = +20^{\circ}$) scan: $Z_{EC} = +30$ cm \rightarrow +15cm (during 5.0 – 5.5s) :

- Z_{EC} approaches +15cm. → Alfvénic activity is disappeared and the overall performance increase → Stored energy and <u>β_N: ~ 25% increase</u>, Neutron rate : almost doubled
- Far-off axis ECCD touches TM, but not affect to AEs. Optimal deposition needed!

2. Experimental Setup (Investigations on Co- & Counter-ECCD applicability)

Central T_i change is not so significant in 22937, 22939.

 $(B_{\rm T}, I_{\rm P}) = (1.8 \text{ T}, 0.5 \text{ MA}), q_0 > 1.5 @ \text{flat-top}, I_{\rm i} \sim 0.75 - 0.85$

Heating: NB1-A & B & C (70 - 90 keV), $P_{NB} \sim 3.4 - 4.5$ MW, $P_{ECCD} \sim 0.7 - 1.3$ MW

- 1. <u>co-ECCD</u> ($\phi_{tor} \sim 20^{\circ}$, off-axis) scan (-10cm < $Z_{EC} < +10cm$) across the possible mode location by steering mirror to see if AEs are excited or mitigated. Neutron rate signal is an indicator to optimize the EC-wave deposition location (Z_{EC}).
- 2. Two EC-wave launchers: 1 central ECH (fixed) & 1 co- and counter-ECCD (scanning)

ACKNOWLEDGEMENTS

This work was supported by the Ministry of Science and ICT under the KSTAR project and the ITER Technology R&D Program.

DISCUSSIONS

- High q_0 (> 1.5) & q_{min} , low l_i (~ 0.8) by mild off-axis ECCD provided good testbed for driving & controlling the AEs.
- Co-I_P directional ECCD (0.7MW) mitigates AEs successfully in the high β_P or high q_{min} scenarios of KSTAR \rightarrow Performance enhancement, but the on-axis co-ECCD is not so effective.
- q_0 drop (~2.0 \rightarrow ~1.5) and core q-profile shaping, core T_e increase \rightarrow Increase of continuum damping & β increase are beneficial to increase whole damping \rightarrow Weak AE activities & EP confinement enhancement
- Co-ECCD is better to control the TAEs by means of increasing continuum damping.
- Tearing-mode amplitude (small) can increase as ECCD approaches core, but AEs are mitigated without performance degradation. (β $\hat{1}$, Neutron $\hat{1}$, core T_{e} , T_{i} $\hat{1}$) However, in higher P_{NB} (~ 4.3 MW), AE-control was lost by large-amplitude TM. Dynamic control using the multiple launchers can be suggested.
 - Not into the fast-ion profile stiffness since the P_{NB} is ~ 3.0 MW in the previous works. P_{NB} ~ 4.3 MW seems to be marginal. Broadening beam-ion profile may be effective for reducing fast-ion drive.

- → Thermal-ion Landau damping seems to be weak in TAE-mitigation stage.
- Normalized pressure gradient (α) > Critical level (α_{crit})
 Stabilization in the enhanced β (suppression of core TAEs)
- Fast-ion pressure increases as the AEs are mitigated.
 TRANSP calculated D_{fast} for the co-ECCD-assisted TAE mitigation case is close to the classical transport.