Active Control of Toroidal Alfvén Eigenmodes Using the Electron Cyclotron Waves in KSTAR High-Performance Discharges

J. Kim¹, J. Kang¹, M.W. Lee¹, T. Rhee¹, J. Jo¹, J.H. Lee¹, M.J. Choi¹, M. Joung¹, M.H. Woo¹, J. Ko¹, M. Podestà², R. Nazikian², H. Han¹, J.M. Park³ and Y.-S. Na³

¹Korea Institute of Fusion Energy, Daejeon, Republic of Korea
²Princeton Plasma Physics Laboratory, Princeton, USA
³Oak Ridge National Laboratory, Oak Ridge, USA
⁴Department of Nuclear Engineering, Seoul National University, Seoul, Republic of Korea

ACKNOWLEDGEMENTS

This work was supported by the Ministry of Science and ICT under the KSTAR project and the ITER Technology R&D Program.

1. Introduction

1.1. Previous study: AE suppression by co-ECCD scan in high β, long-pulse discharges enhances the plasma performance

- Optimization of W-factors (AE) in high-performance discharges lead to
 1. Redistribution of core fast-ion pressure
 2. Improvement of fusion yield
- Need of AEs mitigation to avoid performance degradation in the KSTAR advanced scenarios.

2. Experimental Observations:

- Experimental observations on the TAE mitigations have shown the attention to significant enhancement of performance in the advanced operation scenarios (high β).
- Off-axis co-ECCD applications in the high qₜ₀ for qₜ₀ scenarios show TAE mitigation for several tens of qₜ₀, resulting in better confinement enhancement.
- Primary mechanism of AE mitigation is based on increased continuum damping.
- ECCD scan is one of promising techniques to control the TAEs.

1.2. Previous study: AE suppression by co-ECCD scan in high β, long-pulse discharges enhances the plasma performance

- ECH-off period: ∆(1.8 T, 0.5 MA), qₜ₀ = 1.5 @ flat-top, t = 0.75 – 0.85
- Heating: NB1-A & B (~ 50 keV, 2.9 MW), co-ECCD (~ 800 GHz, 0.7 MW, qₜ₀ \approx 0.75)(25846) tor: \(Z_{EC} = +30 \) cm (during 5.0 – 5.5 s)

- As, approaches, \(λ_{AE} \)
- Alfvén stability is disrupted and the overall performance increases.

- Stabilization in the enhanced β scenario.

2. Experimental Setup (Investigations on Co- & Counter-ECCD applicability)

- Experimental condition:
 \([β, \lambda] \approx (1.8 T, 0.5 MA), qₜ₀ = 1.5@flat-top, t = 0.75 \approx 0.85\)

- Heating: NB1-A & B (~ 50 keV, 2.9 MW), co-ECCD (~ 800 GHz, 0.7 MW, qₜ₀ \approx 0.75)(25846) tor: \(Z_{EC} = +30 \) cm (during 5.0 – 5.5 s)

- Two EC-wave launchers: 1 central ECH (fixed) & 1 co- and counter-ECCD (scanning)

3.1. Experimental Results

- Both co- & counter-ECCD cases can mitigate or suppress the TAEs in elevated qₜ₀ scenarios.
- Primary control mechanism: Increase in continuum damping by blowing core q-profile shape.
- Overall plasma β increases. → Benefit to TAE stabilization (same in high β scenario).
- Co-ECCD is superior than counter-ECCD to control TAEs for over tens of qₜ₀.
- Counter-ECCD has the possibility of TAE control under the elevated qₜ₀ scenario.

- Measured amplitudes of n = 1 EFM in co-ECCD-assisted mitigation stage presents the enhancement of the plasma performance (including core fast-ion pressure).

3.2. Profiles (safety factor, fast-ion / total pressure, shear, ...)

- Co-ECCD (shot #25846) suppresses TAEs in the mitigated beam-power (PEC = 4.3 MW). However, the control was lost due to tearing mode excitation.
- Fast-ion pressure increases as the AEs are mitigated.
- TRANSP calculated \(D_{fast}\) for the co-ECCD-assisted TAE mitigation case is close to the classical transport.

DISCUSSIONS

- High qₜ₀ (1.5) and \(q_{AE} \) drop (~0.5) by mild off-axis ECCD provided good testbed for driving & controlling the AEs.
- Co-ECCD, directional ECCD (0.75MW) mitigates AEs successfully in the high β, qₜ₀ scenarios of KSTAR: Performance enhancement, but the on-axis co-ECCD is not so effective.
- Excessive core total pressure gradient is a candidate cause.
- Need to investigate the TAE control without large-amplitude tearing modes.