Max-Planck-Institut für Plasmaphysik

Global electromagnetic gyrokinetic simulations of energetic particle driven instabilities in ITER and ASDEX Upgrade

T. Hayward-Schneider^{1*}, F. Vannini¹, Ph. Lauber¹, A. Bottino¹, Z.X. Lu¹, S. Günter¹ email: thomas.hayward@ipp.mpg.de

Motivation

ITER will present a challenge in terms of dealing with significant quantities of fusion alpha particles for the first time. While the ITER 15MA scenario [1] has received plenty of attention in the past [2-9], the models used to address the problem vary, and have not all agreed. In this work, we apply the global electromagnetic gyrokinetic model, using the ORB5 code [10], to the problem of nonlinear Toroidal Alfvén Eigenmodes (TAEs) in the ITER 15MA scenario, and to nonlinear Energetic Particle Mode (EPM)/Energetic particle driven Geodesic Acoustic Mode (EGAM) interaction in ASDEX Upgrade (AUG).

Results: ITER TAE modes

Examples of mode evolution: For low/medium mode numbers, such as n = 12, we see global structures, and the presence of multiple coexisting modes. For higher mode numbers, such as n = 30, modes are well localized.

¹Max Planck Institute for Plasma Physics, Garching, Germany

"NLED-AUG" Scenario [16, 17]

0.4 -

0.2 -

ੁੱ 0.0 -

' [└] −0.2 -

-0.4

-0.6

-0.8

In this work: treat EPs as bump-on-tail:

 $v_{\parallel, ext{bump}} = \pm 8 \sqrt{T_e/m_i}$

Fig. (Upper): n = 12: Evolution of the harmonics of the electrostatic potential (left), spectrogram (middle). We compare these to eigenfunctions obtained from LIGKA (right).

Fig. (Lower): n = 30: Evolution of the harmonics of the electrostatic potential (left), spectrogram (middle), obtained from ORB5. (Right): n = 30 eigenfunction from ORB5.

TAE linear spectrum:

Putting this together, we perform simulations with both full radius and annular $(0.2 \le s \le 0.7)$ toroidal mode numbers ranging from n = 10 to n = 40. We include on the figures also the case with n = 26 with the nominal EP density (magenta). FLR points are shown in black. With the isotropic slowing down, we observe an increase in growth rate for

"ORB5: a global electromagnetic gyrokinetic code using the PIC approach in toroidal geometry" [10]

- Originally developed at SPC (Switzerland)
 - now at SPC, IPP (Germany) and Univ. of Warwick (UK)
- Filter applied in toroidal and poloidal mode numbers
 - $\blacktriangleright m(r) = nq(r) \pm \Delta m$

Numerical tool: ORB5

- Effectively mitigates with the so-called cancellation problem using the pullback scheme [11] (leads to an order of magn. increase of time step)
- Drift-kinetic, fluid, hybrid, and adiabatic electron models present:
 - These results all with kinetic electrons (ITER: $m_e/m_i = 1/200$; AUG: realistic (1/3676))
- ► Gyrokinetic (GK) or drift-kinetic (DK) ions (here: ITER: bulk GK, EPs DK, AUG: GK)
- Previously used for turbulence studies as well as EP physics:
 - ► ITPA-TAE benchmark [12], DIII-D RSAE/TAE benchmark [13]

Numerical parameters:

all ITER presented simulations were performed using $\{32, 128, 32\} \cdot 10^6$ markers for the bulk ions, electrons, and EPs respectively.

Full radius simulations used a grid of (1024, 512, 128) in the radial, poloidal, and toroidal directions, (512, 256, 128) for reduced annulus (0.2 - 0.7). For large $n \ (> 30)$, the poloidal and toroidal grids were increased, for some cases with small n, reduced.

Unless otherwise stated, the timestep was $1.875~\omega_{ci}^{-1}$. $\omega_{ci}/\omega_A~\sim~187$, $\omega_A \sim 1.05 imes 10^6$ rad s $^{-1}$.

n=26 from $pprox 0.016\omega_A$ to $0.021\omega_A$ (not shown).

NL evolution

Fig.: (Left) Time evolution of the toroidal envelopes of the ES potential in a multi-mode ($20 \le n \le 30$) annular simulation (10x markers). (Right) Snapshot of the electrostatic potential in the linear (a) and nonlinear (b) time of a global simulation, showing the spread to larger radius in the nonlinear phase [18].

Results: NLED-AUG

For AUG simulations, $\{30, 120, 30\} \cdot 10^6$ markers were used, and the grid was (288, 288, 48) (full radius). The timestep was $3 \omega_{ci}^{-1}$. $\omega_{ci}/\omega_A \sim 20.7$.

Conclusions

- ► Global, electromagnetic gyrokinetic code ORB5 applied to TAEs in ITER 15MA scenario and EPM/EGAM in ASDEX Upgrade scenario
- Systematic linear studies for both reduced annulus and full domain simulations

Nonlinearly, saturation levels enhanced by multi-mode interaction

Fig: (left) n = 1, m = 2 EPM found (see [14] for related benchmark vs. MHD-Hybrid codes). (right) when considering $n = \{0, 1\}$ together, enhanced EPM saturation level observed vs. n = 1 EPM alone. This effect is found to depend on n_{EP} [15]

Simulations were performed under the projects	ORBFAST and OrbZone on the EUROfusion N	Marconi supercomputer operated by CINECA and	on the Cobra supercomputer of the Max Planck Soc	ciety, operated by the MPCDF.	
[1] A. Polevoi <i>et al.</i> JFR (2002)	[4] S. Pinches <i>et al.</i> POP (2015)	[7] P. Rodrigues <i>et al.</i> NF (2015)	[10] E. Lanti <i>et al.</i> CPC 2020	[13] S. Taimourzadeh <i>et al.</i> NF (2019)	<pre>[16] http://www2.ipp.mpg.de/~pwl/NLED_</pre>
[2] N. Gorelenkov <i>et al.</i> PPPL Rep. (2008)	[5] Ph. Lauber PPCF (2015)	[8] M. Fitzgerald <i>et al.</i> NF (2016)	[11] A. Mishchenko <i>et al.</i> CPC (2019)	[14] G. Vlad <i>et al.</i> This meeting	AUG/data.html [17] P. Poloskei <i>et al.</i> EPS 2017 [19] T. Hauward Schneider et al. NE (2021)
[3] R. Waltz <i>et al.</i> NF (2014) [6]	[6] M. Schneller <i>et al.</i> PPCF (2015)	[9] M. Isaev <i>et al.</i> PPR (2017)	[12] A. Könies <i>et al.</i> NF (2018)	[15] F. Vannini <i>et al.</i> (sub.)	
					[10] I. Hayward-Schneider <i>et al.</i> NF (2021)

IAEA Fusion Energy Conference 2020

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement number 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

