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ABSTRACT Calculation condition

eThe numerical fast-ion loss detector “numerical FILD” which solves the eMagnetic configuration (calculated by HINT code) K. Ogawa, et al., Nucl.
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Newton-Lorentz equation was constructed in the MEGA code in order to Bax=0.6 T, <beta>=1.8 % 5 P  FO—————
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*The fast ion which was transported to the stochastic region when AE burst Port through power ~ 15 MW(P_,.:9 MW) . g o
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occurred was detected by “numerical FILD”. oeam injection energy ~ 180 keV IR
. . . . . ) . . . Birth profile of fast ions
eThe velocity distribution of lost fast ions detected by the numerical FILD is eTemperature and density profile
in good agreement with the experimental FILD measurements. measured in the LHD experiment.
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Introduction eThe birth profile of fast ions
*Recurrent TAE bursts are observed in the K. Ogawa, et al., Nucl. calculated by the HFREYA code is used as the fast ion source.
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|t is difficult to get an overall understanding of fast ion :
loss process only by the local measurements in LHD. L_ 0 |
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eComputer simulation is a powerful tool to investigate the interaction e o | oulding center
between fast ions and fast-ion driven AE instabilities (OThe lost co-going fast-ions during AE burst were | ONumerical fast-ion loss detector with Lorentz orbit
measured by FILD near horizontal elongated poloidal | * Fastion orbit near FILD is retraced by using
plane. | Lorentz orbit. 64 Lorentz orbit particle are traced
| the fast ions passing through the aperture are detected.
® MIEGA code | * 10 numerical FILD is set. (assuming helical

- a hybrid simulation code for nonlinear magnetohydrodynamics (MHD) e symmetty)

and energetic-particle dynamics in the real coordinates with use of Fast ion detected by numerical FILD

equilibrium magnetic field calculated by HINT. The pressure of fast ions is @ e Mamencal] gy center of the deected fetion
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@ To investigate the time evolution of AE and beam pressure
- MEGA is applied to the Large Helical Device experiments with the |
realistic condition. 0RO B 0T 0T 2 O 0T 00
. . . . . path length [arb.]
‘Valldatlon Of the S|mulat|on on faSt 10N IOSS due to the AE. Fig. (a) Poincaré plot of fast ion detected by “numerical FILD” on  Fig. Comparison of pitch angle and energy distribution of lost fast
. Compa rison Of IOSt fast lon in the Simulation W|th the FILD experiment. the poloidal plane for the install position of “FILD”. (b) pitch angles 1ons among (a) MEGA simulation before AE burst, (b) MEGA

of the detected fast ion. simulation when AE burst is occurred, and (c) FILD measurements
when AE burst was occurred.
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Time evolution , . region by AE burst. injection energy are mainly detected by the numerical
- A!ﬁxen::)(::::)uo—us andoforze?goekr:lg\é:fecua =The Lorentz orbits of the fast ion reached the numerical F|LD before the AE bursts.
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(JAE bursts occur recurrently. | | i § oo | condition close to the experiment. Lost fast ion velocity distribution in the
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O Stored fast_ion energy iS IeSS than that in 0 0.1 0. 03 0.;1h00.5 06 07 08 09 0 0.1 0.20.30.4:1.?)0.60.70.80.9 1
classical simulation. . . . .
—————————————————————————————————— eThe velocity space region of lost fast ions calculated by MEGA is close to
Typical AE burst and Time evolution of fast ions pressure profile — oi\F——————— :
0 — the lost fast ion measurements by FILD.
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g s S;M : M energy— at the initial peak is m/n=1/1. *During AE burst, fast ion with lower energy than injection energy was
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= 12952 O There is the maximum The fast ion which was transported to stochastic region when AE burst
X o4 Peakof instability atabout (I} The fast ion beta is almost same as occurred was detected by “numerical FILD”
g o 54.3s. The peak is coincident that before the AE burst. '
Yo s With the peak of moc_ie (1) The fast ion pressure decrease for * Most of the detected fast ions are re-entering fast ions.
g E 5t amplitude with m/n=2/1. rho < 0.6 and increase for rho > 0.6.
R I N OThe fast ion loss rate takes  (Ill) After the AE burst, This validation demonstrates that the MEGA is a useful tool for the
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- e the maximum value near the  The fast-ion pressure profile recovers prediction and the understanding of the fast-ion transport and losses due
peak of the m/n=2/1 mode due to the beam injection after the
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