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e Techniques presented here allow for faster evaluation of fast particle losses and connect the results to underlying transport mechanismes.
e These are applied to study alpha particle losses in ITER with various external perturbations and with a full scan on ELM control coil phases.
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ldea: Identify phase-space regions where losses originate
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4. Advection-diffusion model

Orbit-following results (top row) and
analytical estimates based on the magnetic
field data (bottom row). The studied case

is alpha particle confinement in ITER baseline
scenario.

ldea: Use orbit-following code to calculate the transport coefficients and estimate
losses by modelling fast ion transport as an advection-diffusion process.
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3 Origin of the alpha particles that hit the different e Markers were traced for 1 ms to calculate the transport coefficients.
wall elements in ITER.
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e The coefficients were then used in an advection-diffusion model to simulate
the transport for the whole slowing down time (0.1 s).
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Marker sampling significantly reduces CPU time, i.e. number
of markers required (solid vertical lines mark 10> markers and

dashed lines 10* markers): No sampling (blue), markers initialized

uniformly on (p', ¢') phase-space (orange), markers initialized
on the loss channels (green).

e Comparison between the advection-diffusion model (total losses 1.42 MW)
and equivalent slowing-down simulation (1.22 MW) show a good agreement.
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6. Further readmg ® The advection-diffusion model was used to estimate alpha particle losses in ITER
with different ELM control coil phases.
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