

EXTENSION OF THE REDUCED ENERGETIC PARTICLE TRANSPORT KICK MODEL TO LOW-FREQUENCY PERTURBATIONS

RSAEs, TAEs

Irvine

iversity of California, Irvin

M. Podestà¹, J. Yang¹, E.D. Fredrickson¹, M. Gorelenkova¹, D. Liu², F.M. Poli¹, R.B. White¹ and NSTX-U Team

¹PPPL, Princeton University, Princeton, NJ USA ²University of California Irvine, Irvine CA USA

Verified, validated EP models are required in integrated tokamak simulations

- EPs (alphas, NB ions, RF tails) provide main source of heating, momentum, current drive in ቜ burning plasmas
- But: EPs drive instabilities, instabilities affect EPs

This work: reduced EP transport models being developed, validated for time-dependent predictive simulations

TRANSP is the main platform for testing EP models in Integrated Simulations

- NUBEAM module in TRANSP accounts for (neo)classical EP physics
- Includes scattering, slowing down, atomic physics (charge-exchange)

NSTX-U scenarios challenge models over broad set of conditions

single NTM

- NTM-only scenario
 - Single (dominant) instability
 - Limited number of resonances
- AEs-only scenario
- Potentially large number of weaker AEs
- "Sea" of resonances
- Multi-mode scenario
 - Variations in background plasma & heating sources (NBI power)
 - Multiple types of instabilities
 - Need to account for possible synergy between different modes (e.g. fishbones + TAEs, kink + TAEs)

fishbones, kink

RSAEs or TAEs

NSTX discharges with coupled kink and Tearing Mode

- NTM destabilized at end of discharge • Dominant 2/1 in this case
- No instabilities in the TAE frequency range observed during the time of interest
- Large TM amplitude causes EP confinement degradation

- Analysis from three NSTX discharges with different q-profile confirms validity of the approach
- Drop in neutron rate (~10%) recovered with no free parameters
- Extend previous work on DIII-D Heidbrink NF 2018 Bardoczi PPCF 2019 Madsen NF 2020 Liu NF 2020

Kick model application to NSTX-U scenarios with co- and counter-propagating AEs

• Transition from co- to counter-TAEs as NB ion density profile becomes flat/hollow

- AEs: use mode structure, damping rate from MHD codes, e.g. NOVA/NOVA-K – Input: thermal profiles, equilibrium
- Kinks, Tearing Modes: analytic expressions for mode structure; mode spectrum and frequency from experiments

Kick model distills physics of wave-particle

interaction for inclusion in $p(\Delta E, \Delta P_{d})$ transport matrix for NUBEAM

- Kinks: hat-like radial displacement
- TMs: alpha(m,n,Psi) coefficients from simple gaussian at q=m/n or cylindrical model
- Particle-following code ORBIT used to infer transport matrix *numerically*

ρ=0.97

ρ=0.99

Podestà PPCF 2014, PPCF 2017, NF 2018

Model can be used for both *interpretive* and *predictive* simulations

• Focus on energetic particle evolution, stability of EP-driven instabilities (e.g. Alfvén Eigenmodes), EP transport by instabilities

Many practical cases lie in between 'fully interpretive' & 'fully predictive'

p=0.99

- For example, only *relative* mode amplitudes may be known from experiment
- Or: parameters for predictions are adjusted based on experimental information • e.g. limit frequency and mode number range
- Also: thermal profiles are assumed to be known in this work!
- For truly predictive simulations, thermal profiles would need to be recomputed as sources change

Podestà PPCF 2017

NSTX, NSTX-U and DIII-D database

- *Predictive* analysis (AEs only) results generally agree within +/-15% with *interpretive* simulations
- However: in some cases, predictive runs fail to reproduce experiments!
 - Predicted AE spectrum differs from experiment
 - Key role of damping rate from MHD codes
 - · Affects inferred AE saturation amplitude

More validation is required to assess model limitations, missing physics

Conclusions and future work

- Kick model extended to low-f instabilities, e.g. sawteeth, kink/fishbones, NTMs
- Model can reproduce experimental observations of fast ion transport
- Validation continues on several devices, including multi-species DT plasmas on JET
- Reduced models enable efficient simulations retaining (most of) the relevant EP physics Including <u>predictive</u> capabilities (ITER & beyond)
- Phase-space resolution is required to move beyond *ad-hoc* models
 - Critical for heating, current drive, thermal transport

predictive kick model

classical

-40 -20 0 20 40 60 80 100 relative difference [%]

200

100

Overall goal: develop framework to streamline TRANSP analysis including effects of instabilities on EPs

Work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences under contract numbers DE-AC02-09CH11466.

NSTX-U at Princeton Plasma Physics Laboratory is a U.S. DOE Office of Science User Facility