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Verified, validated EP models are required in integrated tokamak simulations
• EPs (alphas, NB ions, RF tails) provide main

source of heating, momentum, current drive in
burning plasmas

• But: EPs drive instabilities, instabilities affect EPs

NSTX-U #204202
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Example: modeled NB driven current, results 
differ based on what model is used!

This work: reduced EP transport models being developed, 
validated for time-dependent predictive simulations
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TRANSP is the main platform for testing EP models in Integrated Simulations
• NUBEAM module in TRANSP accounts for (neo)classical EP physics
• Includes scattering, slowing down, atomic physics (charge-exchange)

NUBEAM step k

Classical EP physics:
apply scattering, slowing 

down; update sources

TRANSP (main) TRANSP (main)

NUBEAM can be inaccurate when EP 
transport is enhanced by instabilities

Ad-hoc transport models:
-> often unphysical

-> no predictive capabilities!

Ad-hoc EP diffusivity:
e.g. adjusted to match 

neutron rate

Phase-space resolved 
reduced EP models:

kick, RBQ, …

Physics-based models
-> enable predictive capabilities

Constants of Motion variables are used to describe resonant wave-particle interaction
Each particle orbit characterized by:

E, energy
Pz~mRvpar-qY, canonical momentum
µ~vperp2/B, magnetic moment

Wave stability (drive):

Resonant interactions obey simple rule:

Define transport probability matrix(es) for NUBEAM:
p(DE,DPz |E,Pz,µ)

“Conditional probability that a particle at (E,Pz,µ) 
receives kicks DE, DPz from wave-particle interaction”

Podestà PPCF 2014, PPCF 2017

Complex orbits in real space translate in simple 
trajectories in phase space

w=2pf : mode frequency
n : toroidal mode number Example: rms energy 

kicks from a m/n=1/1 
fishbone

R. B. White, Theory of toroidally confined plasmas, Imperial College Press (2001)

Kick model distills physics of wave-particle
interaction for inclusion in p(DE,DPz) transport matrix for NUBEAM

• AEs: use mode structure, damping rate from MHD codes, e.g. NOVA/NOVA-K
– Input: thermal profiles, equilibrium

• Kinks, Tearing Modes: analytic expressions for mode structure; mode spectrum and 
frequency from experiments
– Kinks: hat-like radial displacement
– TMs: alpha(m,n,Psi) coefficients from simple gaussian at q=m/n or cylindrical model

• Particle-following code ORBIT used to infer transport matrix numerically
Initialize test particles uniformly in 

phase space
Combine DE, DPz from 

same (E,Pz,µ) phase space 
bin into p(DE,DPz )

Repeat for all (E,Pz,µ) bins to 
compute 5D matrix

-> input for NUBEAM: 
p(DE,DPz |E,Pz,µ)

TAE perturbation 
from NOVA code

rms energy change

Track energy, momentum 
variations (kicks) at fixed 

time intervals

p(DE,DPz )

Podestà PPCF 2014, 2017

localized
resonances

Model can be used for both interpretive and predictive simulations

Interpretive runs:
Ø To validate EP models, analyze actual 

discharges
• Use experimental info to set DE, DPz

– E.g. based on neutron rate, internal 
measurements of mode amplitude

Predictive runs:
Ø To optimize/explore new scenarios
• Use saturation condition to set DE, DPz

– Impose drive = damping vs time

classical TRANSP run

measured Main limitation:
• Can be only as good as damping rate 

estimates!

Podestà PPCF 2017

reduced input from experiment

drive from NUBEAM 
or RBQ-1D

damping from NOVA-K
increase
kicks

• Many practical cases lie in between ‘fully 
interpretive’ & ‘fully predictive’

Kick model approach has been verified with ORBIT code

Podestà PPCF 2014, PPCF 2017, NF 2018

• Evolve initial particle distribution
• Kick model: apply transport matrix to modify 

energy, canonical toroidal momentum
• ORBIT: apply perturbation to evolve orbits

• Good agreement with ORBIT observed when 
evolving Fnb over 5 ms, typical time step of 
NUBEAM

Good reconstruction over 3 orders of magnitude 
for co-, trapped (, counter- not present in this

input Fnb) particles

r: correlation 
coefficient
error: (ORBIT-
model)/ORBIT

black: ORBIT
red: Kick Model

• Focus on energetic particle evolution, stability of EP-driven instabilities (e.g. Alfvén Eigenmodes), EP transport by instabilities

• For example, only relative mode amplitudes 
may be known from experiment

• Or: parameters for predictions are adjusted 
based on experimental information

• e.g. limit frequency and mode number range

• Also: thermal profiles are assumed to be 
known in this work!

• For truly predictive simulations, thermal 
profiles would need to be recomputed as 
sources change

Probability matrices describe enhanced transport in Monte Carlo module NUBEAM

• ‘Non-resonant’ particles have small 
fluctuations around initial (E, Pz)

• ‘Resonant’ particles can experience 
large DE, DPz variations 

p(DE,DPz) 
Discrete bins in (Pz,E,µ) can contain both resonant and non-resonant particles

• Probability matrix approach not limited to “diffusive” 
transport

• Can account for convective transport
• Skewed PDF

• Can be used to introduce different sources of EP 
transport
• MHD instabilities
• Microturbulence
• 3D fields (not explored yet)

NSTX-U scenarios challenge models over broad set of conditions
• NTM-only scenario

• Single (dominant) instability
• Limited number of resonances

• AEs-only scenario
• Potentially large number of weaker AEs
• “Sea” of resonances

• Multi-mode scenario
• Variations in background plasma & heating sources (NBI power)
• Multiple types of instabilities
• Need to account for possible synergy between different modes

(e.g. fishbones + TAEs, kink + TAEs)
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NSTX discharges with coupled kink and Tearing Mode
• NTM destabilized at end of discharge

• Dominant 2/1 in this case
• No instabilities in the TAE frequency range observed 

during the time of interest
• Large TM amplitude causes EP confinement 

degradation
• Clear drop in neutron rate

Yang PPCF 2021

• Analysis from three NSTX discharges with 
different q-profile confirms validity of the 
approach

• Drop in neutron rate (~10%) recovered with no 
free parameters

• Extend previous work on DIII-D

Kick model application to NSTX-U scenarios with co- and counter-propagating AEs

Kick model application to NSTX-U multi-mode scenario

Conclusions and future work

Assessment of predictive capabilities for AE-induced fast ion transport

• Transition from co- to counter-TAEs as NB ion density 
profile becomes flat/hollow

• Most quantities evolve in time, not suitable for “single-
time-slice” analysis

Podestà NF 2018

• Main features of the experiment can be reproduced
• Reproduces transition co- to counter-TAEs
• Capture time evolution of unstable modes, spectrum, …

co-TAEs only
co- and cntr-TAEs

Towards predictive simulations: need estimate of unstable spectrum, saturated amplitudes

NB power [MW] neutron rate [au]

TAEs

fishbones
kink
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• Initial estimate for relative AE amplitudes:
• Use saturation condition (drive=damping) to 
infer AE amplitudes vs time

• Then, rescale amplitude of fishbone &  kink to 
match measured neutron rate
• No damping available

NSTX-U #204202 • Analysis provides assessment of role of different instabilities 
on EP transport, NB driven current

• AEs and fishbones/kinks cause comparable drop in neutrons
• Fishbones, kinks are mostly responsible for NB ion density 

depletion near the plasma core
•AEs have larger effect on NB ion energy redistribution

• Synergy between modes is observed, e.g. in total EP losses

NSTX-U #204202

• Predictive analysis (AEs only) results generally agree within +/-15% with 
interpretive simulations

Relative difference from interpretive simulations: 
NSTX, NSTX-U and DIII-D database

• However: in some cases, predictive runs fail to reproduce experiments!
– Predicted AE spectrum differs from experiment
– Key role of damping rate from MHD codes

• Affects inferred AE saturation amplitude

• More validation is required to assess model limitations, missing physics

• Kick model extended to low-f instabilities, e.g. sawteeth, kink/fishbones, NTMs
• Model can reproduce experimental observations of fast ion transport
• Validation continues on several devices, including multi-species DT plasmas on JET

• Reduced models enable efficient simulations retaining (most of) the relevant EP physics
• Including predictive capabilities (ITER & beyond)

• Phase-space resolution is required to move beyond ad-hoc models
• Critical for heating, current drive, thermal transport

• Overall goal: develop framework to streamline TRANSP analysis including effects of 
instabilities on EPs

RSAEs or TAEs

+

Podestà NF 2019
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magnetic fluctuations

2/1

• NTM island width is 
determined from forward 
modeling of perturbed 
emissivity from Soft X-Ray

• Need to include a 1/1 kink 
“non-resonant” component 
to achieve good fit

• Kink and TM are locked in 
phase

Fredrickson PoP 2002

• NTM island width 
from Mirnov coils is 
rescaled based on 
absolute value from 
SXR fit

• Kick model matrix 
computed for 
coupled kink+TM

• TRANSP + kick 
reproduces 
experimental drop 
in neutron rate

Heidbrink NF 2018 Bardoczi PPCF 2019
Madsen NF 2020 Liu NF 2020

Yang PPCF 2021

White PF-B 1984


