A benchmark between HYMAGYC, MEGA and ORB5 codes using the NLED-AUG test case to study Alfvénic modes driven by energetic particles

G. Vlad¹ (gregorio.vlad@enea.it), X. Wang³, F. Vannini², S. Briguglio¹, N. Carlevaro¹, M. Falessi¹, G. Fogaccia¹, V. Fusco¹, F. Zonca^{1,3}, A. Biancalani², A. Bottino², T. Hayward-Schneider², P. Lauber²

¹ENEA, Fusion and Nuclear Safety Department, C. R. Frascati, Via E. Fermi 45, 00044 Frascati (Roma), Italy

²Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching, Germany

³IFTS and Department of Physics, Zhejiang University, Hangzhou 310027, People's Republic of China

- Benchmark activity carried out within the ENR project MET (2019-2020) between the two hybrid MHD-GK codes HYMAGYC and MEGA, and the full GK code ORB5, for n=1 linear stability of energetic particle (EP) driven Alfvénic modes.
- Two cases considered for EP density profiles n_H :
 - peaked on-axis, and
 - peaked off-axis.
- \bullet Scans w.r.t. EP density $n_{\rm H}$ and temperature $T_{\rm H}.$
- At nominal values:
- for peaked on-axis case good agreement between HYMAGYC and MEGA (same RSAE), whereas ORB5 observes a TAE; for higher n_H and/or T_H good agreement among the three codes is recovered
- excellent agreement among all codes for peaked off-axis case (same TAE, ω , some differences on $\gamma \rightarrow$ some differences on damping)

ID: IAEA-CN-286-745 TH/P1-3