TH/P1-27 Poster #865

Validation of GAE simulation and theory for NSTX(-U) and DIII-D

Elena Belova¹, J. Lestz³, N. Crocker², E. Fredrickson¹

Princeton Plasma Physics Laboratory, Princeton NJ, USA
 University of California, Los Angeles, California 90095, USA
 UCI, Irvine CA

Motivation

- Correlation between GAE/CAE observations and flattening of T_e profile at increased NBI power in NSTX suggests that GAE/CAE can reduce the efficiency of NBI heating.
 - Important to correctly identify and predict these instabilities
- Simulations were needed to conclusively identify nature of high-frequency modes (ω/ω_{ci}~ 0.6) in DIII-D.
 - Previously identified as compressional Alfven eigenmodes (CAEs) in DIII-D [Heidbrink, NF2006], however both theory and NSTX simulations predict stronger GAE instabilities [Belova PoP2019, Lestz, NF2021].
 - In NSTX(-U), GAEs were more common especially for lower v_{beam}/v_A .
 - New dedicated experiments in DIII-D suggest SAW dispersion for these modes [S.Tang, PRL 2021]
- Validate HYM code against DIII-D observations.
- DIII-D results indicate that GAEs can be excited for larger aspect-ratio devices and smaller injection velocity v_{beam}/v_A ≤1, therefore they can be unstable in ITER.

Theory and simulations explain GAE frequency scaling with NBI parameters in NSTX, NSTX-U and DIII-D

Numerical model and theory for sub-cyclotron frequency modes developed for NSTX(-U) have been successfully applied to explain DIII-D observations.

- HYM simulations for DIII-D demonstrate that modes with ω/ω_{ci}~ 0.6, previously misidentified as compressional Alfven eigenmodes (CAEs), have shear polarization δB_⊥ >> δB_{||} (GAEs).
- Simulation results match the observed frequencies in DIII-D for high- and low- B_{tor} experiments [S.Tang, PRL 2021, Heidbrink NF06].

ΓX-U

Scaling of experimentally observed GAE frequency with injection velocity vs predicted by theory (lines) and most unstable modes in simulations (black squares). Color lines – 2-fluid (solid) or MHD (dashed) condition for peak instability calculated for $k_{\perp}/k_{\parallel}=1$. Black lines show $v_{\parallel,res} \leq v_0$ boundary.

Theory predict scaling of most unstable GAE with B_{tor}, n_e, λ_0

Predicted range of most unstable counter-GAEs:

$$\frac{1}{(1+v_0/v_A)} < \frac{\omega}{\omega_{ci}} \le \frac{1}{(1+\frac{v_0}{v_A}\sqrt{1-\lambda_0})}$$

[Belova, PoP 2019] [Lestz, PoP 2020]

- $\omega \sim \omega_{ci}$ nearly linear scaling with B_{tor}
- Weaker than $1/\sqrt{n_e} \text{scaling}$ with density.
- Larger v_0/v_A results in smaller values of ω/ω_{ci} :

```
ω/ω_{ci} \approx 0.6 for v_0/v_A \sim 1 and \lambda_0 \sim 0.6 (DIII-D),
```

 $ω/ω_{ci} \approx 0.4$ for $v_0/v_A \sim 2$ (NSTX-U),

 $\omega/\omega_{ci} \lesssim 0.2 \text{ for } v_0/v_A \gtrsim 4 \text{ (NSTX)},$

• Scaling with λ_0 : larger $\lambda_0 \rightarrow$ larger ω/ω_{ci} $\omega/\omega_{ci} \approx 0.6 \text{ for } \lambda_0 = 0.5,$ $\omega/\omega_{ci} \approx 0.7 \text{ for } \lambda_0 = 0.8 (v_0/v_A \sim 1)$

– consistent with DIII-D 'left' and 'right' beam sources (ω/ω_{ci} =0.56 and ω/ω_{ci} =0.69 [Heidbrink,NF06]).

A roughly linear scaling with *B*_{tor} is seen for GAE frequency in **NSTX-U** [Fredrickson,NF18]

n_e-1/2

DIII-D: (a) Spectra for B_{tor} =0.6 T with 80 keV left beams; (b) Frequency of the strongest mode vs the line-average n_e for all the discharges in the database [Heidbrink,NF06].

HYM simulations for DIII-D

Two basic cases are considered:

1. NSTX-similarity experiments on DIII-D from [W. Heidbrink et al, NF 2006]

B_{tor}= 0.6T, R₀= 1.63m, a= 0.56m, I= 0.6MA, q₀=1.2, q_{max}=4.5, β_{tot} ~9% Beam parameters: E= 80keV, V₀/V_A= 1.5, n_b/n_e ~4%, β_{beam} ~3% Observed mode parameters: f= 2.5MHz, f_{ci}= 4.5MHz

2. More recent dedicated GAE/CAE experiments [S.Tang PRL 2021, N.Crocker 2021]:

B_{tor}= **1.24T**, R₀= 1.72m, I= 0.62MA, β_{tot} ~2% Beam parameters: E= 78keV, **V**₀/**V**_A= **0.8**, n_b/n_e ~3%, β_{beam}~0.5% Observed mode parameters: f= 5.5MHz, f_{ci}= 9.5MHz

Sub-cyclotron frequency Alfven Eigenmodes were observed in low toroidal field experiments in DIII-D

Time evolution of the magnetic signal and spectra in a discharge with periodic injection of 80 keV left beams; $B_T = 0.6$ T; f_{ci} =4.5Mhz. [Heidbrink, NF2006] • High-frequency AEs were observed in DIII-D in low toroidal field discharges (NSTX similarity experiments) mostly when $v_b \gtrsim v_A$.

• These modes are counter-propagating and driven unstable by Doppler shifted cyclotron resonance with beam ions.

• Mode polarization was not measured directly, but large dB_{ϕ} was observed near the edge.

- They were identified as compressional Alfven eigenmodes (CAE) based on high frequency ($f \sim 0.6 f_{ci}$) and comparison with previous theoretical instability conditions.
- For comparison:

 $\begin{array}{rcl} \text{NSTX} & \rightarrow & f_{\text{GAE}} \thicksim 0.1\mbox{-}0.3 \ f_{\text{ci}} \ ; \ f_{\text{CAE}} \backsim 0.3\mbox{-}0.5 \ f_{\text{ci}}, \\ \text{NSTX-U} & \rightarrow & f_{\text{GAE}} \backsim 0.4 \ f_{\text{ci}} \end{array}$

Early CAE/GAE theory predicted instability for large values of $k_{\perp}\rho_{b}$

[Heidbrink, NF2006]

- Experimental estimates got $k_{\perp}\rho_b \lesssim 1$ (based on CAE dispersion ie from observed ω/v_A) and local B value.
- Re-scaling for B on axis gives even lower values: $k_{\perp}\rho_{b} \lesssim 0.6 \; k_{\perp} v_{A}/\omega.$
- Previously theory predicted the CAE instability for: $1 < k_{\perp}\rho_b < 2$
- For Global Alfven eigenmode (GAE) instability: $2 < k_{\perp} \rho_b < 4$
- New GAE/CAE theory [Belova,2019, Lestz, 2020] predicts stronger instability for small k_{\perp}/k_{\parallel} ($k_{\perp}\rho_b{<<}1$), and GAEs more unstable than CAEs.

Case 1: NSTX-similarity experiments on DIII-D

HYM parameters: V_0/V_A = 1.5, n_b/n_e =4%, λ_0 = 0.75, $\Delta\lambda$ = 0.2

Simulation results:

- Unstable modes have shear Alfven polarization with $\delta B_{||} << \delta B_{\perp}$ and are counter-rotating GAEs
- |n|=12-18 with m~1-5,
- frequencies ω/ω_{ci} =0.5-0.7, and growth rates γ/ω_{ci} =0.003 0.0075.
- Can estimate unstable |n| from $n \approx R_0 k_{\parallel}$ and SAW dispersion to get: $n \approx R_0 \omega / v_A \sim 15$.

B_{tor}= 0.6T, R₀= 1.63m, a= 0.56m, I= 0.6MA, q₀=1.2, q_{max}=4.5, β_{tot} ~9% Beam parameters: E= 80keV, V₀/V_A= 1.5, n_b/n_e ~4%, β_{beam} ~3% Observed mode parameters: f= 2.5MHz, f_{ci}= 4.5MHz

Growth rates and frequencies of unstable counter-GAEs from HYM simulations for $v_0/v_A=1.5$ and $n_b=4\%$.

Toroidal mode numbers were not measured in experiments but estimated as n = -O(10). For #120196 shot n = -16 + / -5 was inferred from correlation with changes in Mirnov signal [W. Heidbrink et al, NF 2006]

Modes have shear polarization in the core (GAEs)

Radial profiles of δB for n = -16 counter-GAE

- Simulations show unstable counter-propagating GAEs with peak values of $\delta B_{\parallel} \sim 0.05 \ \delta B_{\perp}$
- Mode is located near the magnetic axis R=1.6m; $\delta B_{||}$ radial profile is wider.

• $k_{\perp}\rho_b \sim 1$ for m= 2-3, $v_{\parallel} = 0.7v$, and $v \sim 0.8v_0$

Compressional perturbations dominate at the edge

Time evolution of different δB components for *n*= *-15* counter-GAE at two radial locations away from the axis (R₀=1.61m): R=1.96m and R=2.25m.

 δB_{\parallel} has much wider radial profile compared to $\delta B_{\perp} \Rightarrow$ compressional perturbations dominate at the edge where: $\delta B_{\parallel} \sim 2 |\delta B_{\perp}|$.

Large number of sideband resonances can be seen for each unstable GAE

HYM: fast-ion energy vs pitch distribution from n=-16 GAE simulations; resonant line is shown for v_{\parallel} =0.8 v_A ; colour dots show resonant particles.

80

Density scan allows to estimate damping for GAE

Growth rate and frequency of n=-16 GAE vs beam density.

- Estimated stability threshold is n_b/n₀≈ 0.02.
- Dependence is not linear in contrast with NSTX and NSTX-U simulations.
- Assuming that $\gamma = Cn_b \gamma_d$, the damping rate (continuum) can be calculated.
- For experimental parameters $(n_b/n_0 \approx 0.04)$: $\gamma_d \approx 0.5 \gamma_{drive}$, where $\gamma_{drive}/\omega_{ci} \approx 0.016$.

Case 2: Higher B_{tor} experiments on DIII-D

B_{tor}= **1.24T**, R₀= 1.72m, I= 0.62MA, q₀=0.94, q_{max}=6, β_{tot} ~2% Beam parameters: E= 75-80keV, **V**₀/**V**_A= **0.8**, n_b/n_e=3%, β_{beam} ~0.5% Observed mode parameters: f= 5.5 MHz, f_{ci}= 9.5 MHz

<u>HYM parameters:</u> V_0/V_A = 0.8-0.9, n_b/n_e=3-6%, λ_0 =0.65-0.75, $\Delta\lambda$ = 0.2

- Unstable modes have shear Alfven polarization with $\delta B_{\parallel} < \delta B_{\perp}$ and are counter-rotating GAEs
- |n|= 22-24 with m~ 3-4,
- frequencies ω/ω_{ci} = 0.6-0.75, and growth rates γ/ω_{ci} =0.001 0.003.
- SAW estimate for n: $|n| = R_0 \omega / v_A \sim 19 22$,

DIII-D estimated toroidal mode numbers was n≈ - 28, from 2-fluid SAW dispersion relation [S.Tang, PRL 2021].

Growth rates and frequencies of unstable counter-GAEs from HYM simulations for $v_0/v_A=0.8$, $n_b=6\%$, $\lambda_0=0.75$.

HYM simulations demonstrate that unstable modes in DIII-D have SAW polarization (GAEs)

- High toroidal mode numbers |n| > 20; $\omega/\omega_{ci} \sim 0.6-0.7$; $k_{\perp}\rho_b \sim 0.5$
- Located near the magnetic axis.

 ω/ω_{ci}

Large number of sideband resonances can be seen for each unstable GAE

HYM fast-ion energy vs pitch distribution from n=-22 GAE simulations; resonant line is shown for v_{\parallel} =0.4 v_{A} ; colour dots show resonant particles.

Location of resonant particles in phase space: $\lambda = \mu B_0 / \epsilon \text{ vs } p_{\phi}$. Particle color corresponds to different energies: from E=0 (purple) to E=80 keV (red).

Two groups of resonant particles: driving ($\lambda < \lambda_0$) or damping ($\lambda > \lambda_0$)

Energy exchange rate between the beam ions and the mode $\Delta K = \int (\delta j_b \cdot \delta E) d^3x = \sum (v_m \cdot \delta E) w_m$.

Lower energy particles are driving, and particles from the tail are stabilizing GAE.

Scatter plot of resonant particles from linear phase of n=-22 GAE simulations. Time-averaged values of $(v \cdot \delta E)w$ [a.u.] of resonant particles. Particle color corresponds to different energies: from E=35keV (green) to E=80keV (red).

HYM simulations for DIII-D agree with analytic predictions

(a) contour plot of GAE growth rate and (b) plot of $\gamma(k_{\perp}\rho_i)$ for fixed frequencies; blue-green contours correspond to negative values, and orange-red to positive; γ/ω_{ci} values are between -0.08:0.011. DIII-D beam parameters: V_0/V_A =0.9, n_b/n_e =0.05, λ_0 =0.7, $\Delta\lambda$ =0.2.

- Frequency of most unstable modes: $\omega/\omega_{ci} \sim 0.6$,
- GAE linear growth rate is largest for small values of k_{\perp}

$$\gamma \approx \pi \frac{n_b}{n_i} \frac{\omega_{ci}^2}{2\omega} v_{||res}^3 A \int_0^{\lambda_m} \frac{d\lambda}{(1-\lambda)^2} \lambda \frac{\partial f}{\partial \lambda} \frac{J_1^2}{\xi^2} \Big|,$$

 $v_{\parallel res} = (\omega_{ci} - \omega)/|k_{\parallel}|, \quad \lambda_m = 1 - v_{\parallel res}^2/v_0^2, \quad v_0 - \text{injection velocity},$ $f = A \exp[-(\lambda - \lambda_0)^2/\Delta\lambda^2] / (v^3 + v_*^3).$

- Resonant beam ions drive instability provided: $\partial f / \partial \lambda > 0$, i.e. when $\lambda < \lambda_0$ and stabilizing otherwise.
- Most unstable modes have $k_{\perp}\rho_b\!<\!1,$ and are in the range [1,2]:

 $(1 + v_0/v_A)^{-1} < \omega/\omega_{ci} \le (1 + v_0/v_A\sqrt{[1-\lambda_0]})^{-1}$

- follows from cyclotron resonance condition and the instability condition: $\lambda_m\!\!<\lambda_0$
- Higher frequency modes with ω/ω_{ci} > (1 + v₀/v_A√[1-λ₀])⁻¹ have smaller growth rates and unstable if: 2< k_⊥ρ_b<4 (Bessel regime [3]).

Belova, Phys. Plasmas 2019
 Lestz, Phys. Plasmas 2020
 Gorelenkov, NF03.

Dependence on frequency and $k_{\perp}\rho_i~$ for counter-GAEs

$$\gamma \approx \pi \frac{n_b}{n_i} \frac{\omega_{ci}^2}{2\omega} v_{||res}^3 A \int_0^{\lambda_m} \frac{d\lambda}{(1-\lambda)^2} \lambda \frac{\partial f}{\partial \lambda} \frac{J_1^2}{\xi^2} \Big|_{v_{||}=v_{re}}$$

$$G(\lambda)$$

$$\lambda = v_{\perp}^{2}/v^{2}, \ \lambda_{m} = 1 - v_{\parallel res}^{2}/v_{0}^{2}, \ v_{\parallel res} = (\omega_{ci} - \omega)/|k_{\parallel}|$$

$$\xi = k_{\perp}v_{\perp}/\omega_{ci}$$

$$f = A \exp[-(\lambda - \lambda_{0})^{2}/\Delta\lambda^{2}]/(v^{3} + v_{*}^{3})$$

The sign of the integrand is determined by sign of $\partial f/\partial \lambda = 2(\lambda_0 - \lambda)f/\Delta \lambda^2$

- \rightarrow particles with $\lambda < \lambda_0$ (small v₁) are destabilizing,
- \rightarrow particles with $\lambda > \lambda_0$ (large v₁) are stabilizing.
- 1. For $\omega < \omega_{ci}$, $v_{\parallel res} \sim v_0$ and $\lambda_m < 1$
 - $\lambda_m \leq \lambda_0$ sufficient condition for instability (any k₁) and gives an approximate range of unstable frequencies: $\omega/\omega_{ci} \leq (1 + v_0/v_A\sqrt{[1-\lambda_0]})^{-1}$
 - most unstable modes have $k_{\perp}\rho_i <<1$ with $(J_1/\xi)^2 \approx 1/4$
- 2. High-frequency limit $\omega \approx \omega_{ci}$, $v_{\parallel res} << v_0$ and $\lambda_m \approx 1$
 - for small $k_{_{\rm L}}\rho_i \to (J_{_{\rm I}}/\xi)^2 {=} 1/4~$ and γ is negative
 - for $k_{\perp}\rho_i \gtrsim 2$, Bessel factor <u>reduces stabilizing effect</u> of large $v_{\perp} (\lambda > \lambda_0)$ particles.

Counter-CAE are predicted to be less unstable than GAEs

Contour plots of growth rate and plots of γ vs $k_{\perp}\rho_i$ for wide pitch parameter distributions; blue-green contours correspond to negative values, and orange-red to positive.

(a) GAE: $\Delta\lambda_0=0.3$, γ/ω_{ci} values are between -0.22÷0.036; (b) CAE: $\Delta\lambda_0=0.3$, same range of γ/ω_{ci} values as in (a).

$$\gamma \approx \pi \frac{n_b}{n_i} \frac{\omega_{ci}^2}{2\omega} v_{||res}^3 A \int_0^{\lambda_m} \frac{d\lambda}{(1-\lambda)^2} \lambda \frac{\partial f}{\partial \lambda} \frac{(J_0^2 - J_2^2)}{4} \Big|,$$

$$v_{||} = v_{res}$$

- Same (sufficient) instability condition: $\lambda_m < \lambda_0$ as GAEs, and same γ for k₁=0 [1,2], but ω = kv_A.
- Most unstable modes have $k_{\perp}\rho_{b}$ <1, and are in the range:

 $(1 + \alpha v_0 / v_A)^{-1} \le \omega / \omega_{ci} \le (1 + \alpha v_0 / v_A \sqrt{[1 - \lambda_0]})^{-1}$

where $\alpha = |\mathbf{k}_{\parallel}/\mathbf{k}|$.

- Counter-CAEs have much smaller growth rates than GAEs for $k_{\perp}/k_{\parallel}\gtrsim 1.$
- Two-fluid effects / coupling to SAW reduce growth rate of CAEs [2].

Belova et al, Phys. Plasmas 2019
 Lestz et al., Phys. Plasmas 2020.

Finite frequency corrections for GAEs ω/ω_{ci} ~1

$$\omega^{2} = k_{||}^{2} v_{A}^{2} f^{2}, \quad \text{where } f^{2} = \frac{1}{2} \left| \left(\frac{k^{2}}{k_{||}^{2}} \left(1 + \varkappa_{||}^{2} \right) + 1 \right) - \sqrt{\left(\frac{k^{2}}{k_{||}^{2}} \left(1 + \varkappa_{||}^{2} \right) + 1 \right)^{2} - 4 \frac{k^{2}}{k_{||}^{2}}} \right|, \quad \text{and } \varkappa_{||} = k_{||} v_{A} / \omega_{C}$$

NSTX-U

Limit
$$k_{\perp} \gg k_{\parallel}$$
:

$$\omega = k_{\parallel} v_A / \sqrt{1 + \left(\frac{k_{\parallel} v_A}{\omega_{ci}}\right)^2}$$

- $\lambda_m = 1 v_{\parallel res}^2 / v_0^2 \le \lambda_0 sufficient$ condition for instability (\approx peak growth rate) valid for large frequencies ($\omega/\omega_{ci} \sim 1$) but correct 2-fluid GAE dispersion should be used.
- One-fluid MHD dispersion leads to overestimated most unstable frequency and underestimated k_{\parallel} (n).

Most unstable frequency and $k_{||}$ range for ω/ω_{ci} ~1

Numerical solution for two conditions using 2fluid SAW dispersion :

1. $v_{\parallel,res} \le v_0$ (existence of resonance) 2. $\lambda_m = 1 - v_{\parallel res}^2 / v_0^2 \le \lambda_0$ (max γ)

the

MHD conditions:
$$\left(1 + \frac{v_0}{v_A}\right)^{-1} < \frac{\omega}{\omega_{ci}} \le \left(1 + \frac{v_0}{v_A}\sqrt{1 - \lambda_0}\right)^{-1}$$
, corresponding to $v_{\parallel, res} < v_0$ and $\lambda_{\parallel} \le \lambda_0$, respectively, modified for $\omega/\omega_{ci} \simeq 1$. Due to MHD description of thermal plasma

HYM code overestimates most unstable frequencies and underestimates most unstable |n|.

Summary and Future Work

- HYM simulations demonstrate that high-frequency modes (ω/ω_{ci}~ 0.6) previously misidentified in DIII-D as compressional (CAEs), have shear polarization δB ≈ δB_⊥ (GAEs).
- Simulations reproduce experimentally observed frequencies and estimated toroidal mode numbers for DIII-D experiments.
- A simple analytical theory based on local dispersion relation is very successful in predicting the counter-GAE instabilities.
- New analytic theory explains range of most unstable modes, and GAE frequency scaling across different devices (NSTX, NSTX-U, DIII-D).
- Counter-GAEs can be unstable in ITER ($v_{beam}/v_A \leq 1$) with $\omega/\omega_{ci} \sim 0.5-0.7$.

Future work:

Need to include 2-fluid (Hall) effects in thermal plasma description to account for finite frequency effects ~O(ω/ω_{ci}). At present, HYM overestimates unstable frequencies, and underestimates toroidal mode numbers.

