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Motivation
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• Correlation between GAE/CAE observations and flattening of Te profile at increased NBI 
power in NSTX suggests that GAE/CAE can reduce the efficiency of NBI heating. 
• Important to correctly identify and predict these instabilities

• Simulations were needed to conclusively identify nature of high-frequency modes (ω/ωci~ 0.6) 
in DIII-D.
• Previously identified as compressional Alfven eigenmodes (CAEs) in DIII-D [Heidbrink, NF2006], 

however both theory and NSTX simulations predict stronger GAE instabilities [Belova PoP2019, Lestz, 
NF2021]. 

• In NSTX(-U), GAEs were more common especially for lower vbeam/vA.
• New dedicated experiments in DIII-D suggest SAW dispersion for these modes [S.Tang, PRL 2021]

• Validate HYM code against DIII-D observations.

• DIII-D results indicate that GAEs can be excited for larger aspect-ratio devices and smaller 
injection velocity vbeam/vA ≲1, therefore they can be unstable in ITER.



Theory and simulations explain GAE frequency scaling with 
NBI parameters in NSTX, NSTX-U and DIII-D

3

Numerical model and theory for sub-cyclotron 
frequency modes developed for NSTX(-U) 
have been successfully applied to explain 
DIII-D observations.

• HYM simulations for DIII-D demonstrate that 
modes with ω/ωci~ 0.6, previously mis-
identified as compressional Alfven 
eigenmodes (CAEs), have shear polarization 
dB^ >> dB|| (GAEs). 

• Simulation results match the observed 
frequencies in DIII-D for high- and low- Btor
experiments [S.Tang, PRL 2021, Heidbrink NF06].

Scaling of experimentally observed GAE frequency with injection velocity vs 
predicted by theory (lines) and most unstable modes in simulations (black squares).
Color lines – 2-fluid (solid) or MHD (dashed) condition for peak instability calculated 
for k⊥/k||=1. Black lines show 𝑣∥,𝑟𝑒𝑠 ≤ 𝑣0 boundary.
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Theory predict scaling of most unstable GAE with Btor,ne,λ0

Predicted range of most unstable counter-GAEs:

• ω ~ ωci →	nearly linear scaling with Btor

• Weaker than 1/√nescaling with density.

• Larger v0/vA results in smaller values of ω/ωci:

ω/ωci≈ 0.6 for v0/vA~ 1 and λ!~0.6 (DIII-D),

ω/ωci≈ 0.4 for v0/vA~ 2  (NSTX-U),

ω/ωci≲ 0.2 for v0/vA≳	4  (NSTX),

• Scaling with λ(:	larger λ(→ larger ω/ωci

ω/ωci≈ 0.6  for λ!=0.5, 
ω/ωci≈ 0.7  for λ!=0.8 (v0/vA~ 1)

– consistent with DIII-D ‘left’ and ‘right’ beam sources (ω/ωci=0.56 
and ω/ωci=0.69  [Heidbrink,NF06]) . 
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A roughly linear 
scaling with Btor is 
seen for GAE 
frequency in NSTX-U
[Fredrickson,NF18]
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DIII-D: (a) Spectra for 
Btor=0.6 T with 80 keV left 
beams; (b) Frequency of 
the strongest mode vs 
the line-average ne for all 
the discharges in the 
database 
[Heidbrink,NF06]. 
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[Belova, PoP 2019]
[Lestz, PoP 2020]



HYM simulations for DIII-D 
Two basic cases are considered:
1. NSTX-similarity experiments on DIII-D from [W. Heidbrink et al, NF 2006]

Btor= 0.6T, R0= 1.63m, a= 0.56m, I= 0.6MA,  q0=1.2, qmax=4.5, βtot ~9%
Beam parameters: E= 80keV,  V0/VA= 1.5,  nb/ne ~4%,  βbeam ~3%
Observed mode parameters: f= 2.5MHz, fci= 4.5MHz

2.  More recent dedicated GAE/CAE experiments [S.Tang PRL 2021, N.Crocker 2021]:

Btor= 1.24T, R0= 1.72m, I= 0.62MA,  βtot ~2%
Beam parameters: E= 78keV,  V0/VA= 0.8, nb/ne ~3%, βbeam~0.5%
Observed mode parameters: f= 5.5MHz, fci= 9.5MHz
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Sub-cyclotron frequency Alfven Eigenmodes were observed in low 
toroidal field experiments in DIII-D

• High-frequency AEs were observed in DIII-D in low 
toroidal field discharges (NSTX similarity experiments) 
mostly when vb≳vA.

• These modes are counter-propagating and driven 
unstable by Doppler shifted cyclotron resonance with 
beam ions.

• Mode polarization was not measured directly, but 
large dBφ was observed near the edge.

• They were identified as compressional Alfven 
eigenmodes (CAE) based on high frequency (f ~0.6fci) 
and comparison with previous theoretical instability 
conditions.

• For comparison:
NSTX →    fGAE~ 0.1-0.3 fci ; fCAE~0.3-0.5 fci, 
NSTX-U →   fGAE~ 0.4 fci

Time evolution of the magnetic signal and spectra 
in a discharge with periodic injection of 80 keV left 
beams; BT = 0.6 T; fci=4.5Mhz. [Heidbrink, NF2006]
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• Experimental estimates got k⊥ρb≲1 (based on CAE 
dispersion ie from observed ω/vA) and local B value. 

• Re-scaling for B on axis gives even lower values:  
k⊥ρb≲ 0.6 k⊥vA/ω.

• Previously theory predicted the CAE instability for:
1 < k⊥ρb < 2

• For Global Alfven eigenmode (GAE) instability:
2 < k⊥ρb < 4

• New GAE/CAE theory [Belova,2019, Lestz, 2020] 
predicts stronger instability for small k⊥/k|| (k⊥ρb<<1), 
and GAEs more unstable than CAEs.

Early CAE/GAE theory predicted instability for large values of k⊥ρb

[Heidbrink, NF2006]
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Case 1: NSTX-similarity experiments on DIII-D 

HYM parameters: V0/VA= 1.5,  nb/ne =4%, λ0= 0.75, Δλ= 0.2

Simulation results:
• Unstable modes have shear Alfven polarization with 
δB||<<δB⊥ and are counter-rotating GAEs
• |n|=12-18 with m~1-5, 
• frequencies ω/ωci=0.5-0.7, and growth rates γ/ωci=0.003 –
0.0075.
• Can estimate unstable |n| from n≈ R0k|| and SAW 
dispersion to get: n≈ R0 ω/vA ~ 15.

Toroidal mode numbers were not measured in experiments but estimated as n= -O(10). 
For #120196 shot  n=-16+/-5 was inferred from correlation with changes in Mirnov
signal [W. Heidbrink et al, NF 2006]

Growth rates and frequencies of unstable counter-
GAEs from HYM simulations for v0/vA=1.5 and  nb=4%.
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Btor= 0.6T, R0= 1.63m, a= 0.56m, I= 0.6MA,  q0=1.2, qmax=4.5, βtot ~9%
Beam parameters: E= 80keV,  V0/VA= 1.5,  nb/ne ~4%,  βbeam ~3%
Observed mode parameters: f= 2.5MHz, fci= 4.5MHz



Modes have shear polarization in the core (GAEs) 

• Simulations show unstable counter-propagating GAEs with peak values of δB|| ~ 0.05 δB⊥

• Mode is located near the magnetic axis R=1.6m; δB|| - radial profile is wider.

• k⊥ρb ~ 1 for m= 2-3, v||= 0.7v, and v~ 0.8v0

Radial profiles of δB for n= -16 counter-GAE 
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Compressional perturbations dominate at the edge 

δB|| has much wider radial profile compared to 
δB⊥ => compressional perturbations dominate at 
the edge where: δB||~ 2| δB⊥|.

Time evolution of different δB
components for n= -15 counter-GAE at 
two radial locations away from the axis 
(R0=1.61m): R=1.96m and R=2.25m.-0.00015
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Large number of sideband resonances can be seen for each unstable GAE

Location of resonant particles in phase space: 
λ=μB0/ε vs pφ. Particle color corresponds to 
different energies: from E=0 (purple) to E=80 
keV (red). 

λ

pφ
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HYM:  fast-ion energy vs pitch distribution 
from n=-16 GAE simulations; resonant line 
is shown for v||=0.8vA; colour dots show 
resonant particles.
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Density scan allows to estimate damping for GAE 

• Estimated stability threshold is 
nb/n0≈ 0.02.

• Dependence is not linear in contrast 
with NSTX and NSTX-U simulations.

• Assuming that γ= Cnb – γd, the damping 
rate (continuum) can be calculated. 

• For experimental parameters 
(nb/n0≈0.04): γd≈0.5 γdrive, where 
γdrive/ωci≈0.016.0
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Case 2: Higher Btor experiments on DIII-D 
Btor= 1.24T, R0= 1.72m, I= 0.62MA,  q0=0.94, qmax=6, βtot ~2%
Beam parameters: E= 75-80keV,  V0/VA= 0.8,  nb/ne =3%,  βbeam ~0.5%
Observed mode parameters: f= 5.5 MHz, fci= 9.5 MHz

HYM parameters:  V0/VA= 0.8-0.9, nb/ne =3-6%, λ0=0.65-0.75, 
Δλ= 0.2
• Unstable modes have shear Alfven polarization with 

δB||<<δB⊥ and are counter-rotating – GAEs
• |n|= 22-24 with m~ 3-4, 
• frequencies ω/ωci= 0.6-0.75, and growth rates 

γ/ωci=0.001 – 0.003.
• SAW estimate for n: |n|= R0ω/vA~ 19 - 22,

DIII-D estimated toroidal mode numbers was n≈ - 28, 
from 2-fluid SAW dispersion relation [S.Tang, PRL 2021]. 

γ/ωci

ω/ωci

Growth rates and frequencies of unstable 
counter-GAEs from HYM simulations for 
v0/vA=0.8,  nb=6%, λ0=0.75.
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HYM simulations demonstrate that unstable modes in DIII-D have SAW 
polarization (GAEs) 

• Simulations show unstable counter-propagating GAEs with δB⊥>10δB||, 
but δB|| has wider radial profile.

• High toroidal mode numbers |n| > 20; ω/ωci ~ 0.6-0.7; k⊥ρb~ 0.5
• Located near the magnetic axis.

Radial profile of δB for n= -22 counter-GAE 
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Large number of sideband resonances can be seen for each unstable GAE

Location of resonant particles in phase 
space: λ=μB0/ε vs pφ. Particle color 
corresponds to different energies: from E=0 
(purple) to E=80 keV (red). 
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n=-22 GAE simulations; resonant line is shown 
for v||=0.4vA; colour dots show resonant particles.
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Two groups of resonant particles: driving (λ<λ0) or damping (λ>λ0) 

Scatter plot of resonant particles from linear phase of n=-22 GAE 
simulations. Time-averaged values of (v∙δE)w  [a.u.] of resonant 
particles. Particle color corresponds to different energies: from 
E=35keV (green) to E=80keV (red). 

<(v∙δE)w>  
[a.u.]

〈v||〉/vA

Energy exchange rate between the beam ions and the mode ΔK= ∫(δjb·δE)d3x = ∑(vm·δE)wm.
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Lower energy particles are 
driving, and particles from the 
tail are stabilizing GAE.



v||res= (ωci - ω)/|k|||,      λm= 1- v||res
2/v0

2,    v0 – injection velocity,
f =A exp[-(λ-λ0)2/Δλ2] / (v3+v*

3).

• Resonant beam ions drive instability provided: ∂f/∂λ>0, i.e.
when λ < λ0 and stabilizing otherwise. 

• Most unstable modes have k⊥ρb < 1, and are in the range [1,2]:

(1 + v0/vA)-1 < ω/ωci ≤ (1 + v0/vA√[1-λ0])-1

- follows from cyclotron resonance condition and the instability
condition: λm< λ0

• Higher frequency modes with ω/ωci > (1 + v0/vA√[1-λ0])-1 have 
smaller growth rates and unstable if: 2< k⊥ρb<4 (Bessel regime 
[3]).
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[1] Belova, Phys. Plasmas 2019
[2] Lestz, Phys. Plasmas 2020
[3] Gorelenkov, NF03.
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(a) contour plot of GAE growth rate and (b) plot of γ(k⊥ρi) for fixed 
frequencies; blue-green contours correspond to negative values, and 
orange-red to positive; γ/ωci values are between -0.08:0.011.         
DIII-D beam parameters: V0/VA=0.9, nb/ne=0.05, λ0=0.7, Δλ=0.2.  
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• Frequency of most unstable modes: ω/ωci ~ 0.6, 
• GAE linear growth rate is largest for small values of k⊥

HYM simulations for DIII-D agree with analytic predictions 



Dependence on frequency and k⊥ρi for counter-GAEs

λ = v⊥2/v2 ,  λm= 1- v||res2/v02,  v||res= (ωci - ω)/|k|||
ξ = k⊥v⊥/ωci

f =A exp[ -(λ-λ0)2/Δλ2 ] / (v3+v*
3)

The sign of the integrand is determined by sign of  ∂f/∂λ=2( λ0 - λ )f /Δλ2

→ particles with λ <	λ0 (	small v⊥) are destabilizing, 
→ particles with λ >	λ0 ( large v⊥)		are stabilizing.

1. For ω < ωci , v||res~ v0 and λm<1 
•  λm ≤ λ0 – sufficient condition for instability (any k⊥) and
gives an approximate range of unstable frequencies: 
ω/ωci ≤ (1 + v0/vA√[1-λ0])-1

•  most unstable modes have k⊥ρi <<1 with (J1/ξ)2 ≈1/4 

2. High-frequency limit ω ≈ ωci , v||res<< v0 and λm≈ 1
•  for small k⊥ρi → (J1/ξ)2=1/4  and γ is negative
•  for k⊥ρi≳	2, Bessel factor reduces stabilizing effect of large v⊥ (λ>λ0) particles.

This clarifies the role of FLR effects: large k⊥ρi reduces the stabilizing effect of particles with λ > λ0
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Counter-CAE are predicted to be less unstable than GAEs 

Contour plots of growth rate and plots of γ vs  k⊥ρi for wide pitch 
parameter distributions; blue-green contours correspond to 
negative values, and orange-red to positive. 
(a) GAE: Δλ0=0.3, γ/ωci values are between -0.22÷0.036; 
(b) CAE: Δλ0=0.3, same range of γ/ωci values as in (a).
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• Same (sufficient) instability condition: λm< λ0 as 
GAEs, and same γ for k⊥=0 [1,2], but 𝜔= kvA.

• Most unstable modes have k⊥ρb<1, and are in the 
range:

(1 + αv0/vA)-1 < ω/ωci < (1 + αv0/vA√[1-λ0])-1

where α = |k||/k|.

• Counter-CAEs have much smaller growth rates 
than GAEs for k⊥/k|| ≳1.

• Two-fluid effects / coupling to SAW reduce growth 
rate of CAEs [2].

v||=vres

k⊥/k|| 

γ/ωci

k⊥ρi 

ω/ωci

(a)   Δλ=0.3,  GAE
ω/ωci=0.4

ω/ωci=0.5

k⊥/k|| 

γ/ωci

k⊥ρi 

ω/ωci

(b)   Δλ=0.3,  CAE
ω/ωci=0.4

ω/ωci=0.5

0.04

0.04

γ > 0

γ > 0

[1] Belova et al, Phys. Plasmas 2019
[2] Lestz et al., Phys. Plasmas 2020.
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Finite frequency corrections for GAEs ω/ωci ~1  

ω/ωci

k||vA/ωci

k⊥=0

k⊥>>k||

𝜔* = 𝑘||*𝑣,*𝑓*, where 𝑓* = -
*

..

.||
. 1 + 𝜘||* + 1 − ..

.||
. 1 + 𝜘||* + 1

*
− 4 .

.

.||
. ,    and 𝜘|| = 𝑘||𝑣,/𝜔/0

Limit 𝑘/ = 0:

𝜔 = 𝑘||𝑣" 1 +
𝑘||𝑣"
2𝜔#$

&

−
𝑘||𝑣"
2𝜔#$

Limit 𝑘/ ≫ 𝑘∥:

𝜔 = 𝑘||𝑣" ∕ 1 +
𝑘||𝑣"
𝜔#$

&

• λm= 1- v||res
2/v0

2  ≤ λ0 – sufficient condition for instability 
(≈ peak growth rate) valid for large frequencies (ω/ωci ~1) 
but correct 2-fluid GAE dispersion should be used. 

• One-fluid MHD dispersion leads to overestimated most 
unstable frequency and underestimated k|| (n). 
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MHD



Most unstable frequency and k|| range for ω/ωci ~1  

MHD conditions: 1 + .'
.(

/-
< 0

0)*
≤ 1 + .'

.(
1 − 𝜆+

/-
, corresponding to 𝑣∥,'() < 𝑣+ and

𝜆3 ≤ 𝜆+ respectively, modified for ω/ωci ~1 . Due to MHD description of thermal plasma, the 

HYM code overestimates most unstable frequencies and underestimates most unstable |n|. 21

Numerical solution for 
two conditions using 2-
fluid SAW dispersion :
1. 𝑣∥,'() ≤ 𝑣+
(existence of resonance)
2. 𝜆3= 1- v||res2/v02 ≤ 𝜆+
(max 𝛾)
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• HYM simulations demonstrate that high-frequency modes (ω/ωci~ 0.6) previously misidentified in 
DIII-D as compressional (CAEs), have shear polarization dB ≈ dB^ (GAEs).

• Simulations reproduce experimentally observed frequencies and estimated toroidal mode numbers 
for DIII-D experiments. 

• A simple analytical theory based on local dispersion relation is very successful in predicting the 
counter-GAE instabilities.

• New analytic theory explains range of most unstable modes, and GAE frequency scaling across 
different devices (NSTX, NSTX-U, DIII-D).

• Counter-GAEs can be unstable in ITER (vbeam/vA ≲1) with ω/ωci ~0.5-0.7.

Future work: 

• Need to include 2-fluid (Hall) effects in thermal plasma description to account for finite frequency 
effects ~O(ω/ωci). At present, HYM overestimates unstable frequencies, and underestimates toroidal 
mode numbers.
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Summary and Future Work


