**Contribution ID: 1201** 

# Ion Heating by Nonlinear Landau Damping of High-n Toroidal Alfvén Eigenmodes in ITER

Jaemin Seo, Y.-S. Na\* and T.S. Hahm

Department of Nuclear Engineering, Seoul National University, Seoul 151-744, Korea \*ysna@snu.ac.kr



Bulk ion heating from nonlinear Landau damping of high-n Toroidal Alfvén Eigenmodes (TAEs) excited by energetic ions is studied. Based on the nonlinear saturation level of high-n TAEs which is confirmed by numerical studies of a wave-kinetic equation incorporating the ion Compton scattering-induced spectral transfer and the particle trapping by the wave, we assess potentially beneficial effect of bulk ion heating, so-called alpha channeling for ITER DT plasmas using an integrated simulation. The result indicates that, in its optimistic limit, the anomalous ion heating due to high-n TAEs can compensate the heating reduction due to energetic particle loss.

### **Motivations**

- For high-n TAEs ( $n \ge 10$ ) in ITER, the nonlinear mode interaction such as ion Compton scattering (ICS, or nonlinear Landau damping) can be a dominant mechanism for the saturation of TAEs [1,2,3].
- Previous analytic studies derived the saturation level of the modes by ICS [1,3] and the consequent bulk ion heating rate [2].

## 3. Alpha-channeling via high-n TAEs in ITER

• EP transport and energy channeling by TAEs

$$\frac{\Delta E}{\Delta P_{\phi}} \simeq \frac{\omega}{n} = const.$$

$$P_{EP \to TAE} \equiv n_{EP} \left\langle -\frac{dE}{dt} \right\rangle_{EP} = n_{EP} \frac{\omega}{n} \left\langle -\frac{dP_{\phi}}{dt} \right\rangle_{EP} = \frac{\omega}{n} \frac{ZeBr}{q} \Gamma_{EP}$$
(5)
(6)

From the EP flux by [3], we can estimate the EP energy transfer to TAEs.

• We need to investigate how the multiple TAEs evolve dynamically and how significant the ion heating will be in ITER, which can be a candidate for the **alpha-channeling**.

## 2. Nonlinear evolution of high-n TAEs

• Wave-kinetic equation [1,2]  $\frac{\partial}{\partial t} E_{\omega} = 2\gamma_{L}(\omega)E_{\omega} - \sum_{\omega'}M_{\omega,\omega'}E_{\omega'}E_{\omega} \qquad (1)$   $\frac{\partial}{\partial t}E_{ion} \simeq \sum_{\omega=\omega_{1}}^{\omega_{M}}\sum_{\omega'=\omega_{1}}^{\omega}\frac{\omega-\omega'}{\omega}M_{\omega,\omega'}E_{\omega'}E_{\omega} \qquad (2)$ 

ha Laboratory for Advanced REsearch



- γ<sub>L</sub> > 0 modes in the gap grows linearly and transfer the energy to lower ω modes by ICS.
   γ<sub>L</sub> < 0 modes near the lower continuum are linearly stable, but are driven nonlinearly by the energy transfer.</li>
- This system exhibits a typical predator-prey (PP) behavior.



- PP oscillation of TAEs by ICS
- For a parabolic shape of the linear growth rate curve,
   Eq. (1) and (2) result in the PP oscillation of the
   multiple TAEs (Fig. 2 (b)).



#### Integrated simulation in ITER burning plasma



- The EPs are transported by TAEs, and the central plasma heating by EP drops about 1/3.

- The nonlinear transfer can sufficiently drive the linearly stable modes such as kinetic TAEs (Fig. 2 (c)).
- The transient peak level of the total mode energy

during the bursty behavior is much larger than the previously expected NL saturation level.



- Initially, the modes near the center of the gap are amplified.
- Then, the downward transfer by ICS excites the stable modes near the gap boundary.
- Finally, the low- $\omega$  modes are damped by the continuum.
- Since the gap structure varies radially, the mode amplitude evolves in real space as well (Fig. 3 (b)).
- It can lead to EP avalanches [4] which induce performance degradation and a wall damage.

- The ICS of high-n TAEs induces additional ion heating (alpha-channeling, Fig 6 (b)).
- The ion heating by alpha-channeling can compensate the collisional ion heating loss by the EP transport ( $P_{TAE \rightarrow ion}/P_{EP,loss} > f_{i,coll} \sim 0.3$ ).

|                                       |                                       |                        |                       | Tab.1                |
|---------------------------------------|---------------------------------------|------------------------|-----------------------|----------------------|
| [MW]                                  | P <sub>abs</sub>                      | P <sub>abs</sub> ,elec | P <sub>abs</sub> ,ion | Q                    |
|                                       | $= P_{\alpha} + P_{NB} - P_{EP,loss}$ |                        |                       | $= P_{fus} / P_{in}$ |
| Case 1: Reference $(P_{EP,loss} = 0)$ | 150.1                                 | 109.3                  | 40.8                  | 10.1                 |
| Case 2: EP transport                  | 121.7                                 | 91.0                   | 30.7                  | 8.79                 |
| Case 3: EP transport + channeling     | 128.5                                 | 87.4                   | 41.2                  | 9.64                 |

- In Case 1, the EP energy is transferred to plasmas by coll. slowing down only ( $Q \approx 10.1$ ).
- Considering the EP transport (Case 2), the reduced plasma heating by EPs decreases  $T_i$ and so does alpha heating further ( $Q \approx 8.79$  with 25% reduction of ion heating).
- In Case 3, the ion heating fraction becomes higher by alpha-channeling, which compensates the ion heating loss by the EP transport ( $Q \approx 9.64$ ).
- The alpha-channeling by TAEs is  $\sim$ 10MW, which is as influential as a single ICRH antenna.

## Conclusion

- The NL evolution of high-n TAEs induced by ICS is investigated.
- The ICS shows that the modes evolve with PP bursts that can cause EP avalanches.
- If we consider a weak effect of particle trapping, the system becomes saturated.
- The ion heating during the spectral transfer, responsible for alpha-channeling, is modeled
- Mode saturation by considering the wave-trapping effect [5]



- When we take the wave-trapping effect into account, the system saturates after decaying oscillations (Fig. 4 (a)).
- The levels normalized to the analytic estimations converge into O(1).



**(a)** 

 $\frac{\sum E_{\omega}}{E_{sat}} \quad 10$ 

 $\frac{P_{ion}}{P_{ion,sat}} \frac{30}{20}$ 

- The saturated energy spectrum (Fig. 4 (b)) shows different characteristics according to  $v_{d0}$ , but both are shifted downwards from the original linear growth curve.

for the predictive simulation.

- With the integrated modeling, it is found that the ion heating by the channeling can compensate the heating loss by the EP transport in the optimistic limit.
- It is still necessary to consider various factors such as GAM coupling [6], CAE-induced channeling [7] and cyclotron resonance of alpha particles [8] in the future.

## Acknowledgments

The authors also gratefully acknowledge The Research Institute of Energy and Resources and The Institute of Engineering Research at Seoul National University. This research was supported by R&D Program of "Development of Electromagnetic Gryokinetic Model Describing Trapped Particles in Magnetic Field(code No. IN2104)" through the Korea Institute of Fusion Energy(KFE) funded by the Government funds, Republic of Korea.

## References

[1] HAHM, T.S. and CHEN, L., *Phys Rev. Lett* **74** (1995) 266
[2] HAHM, T.S. *Plasma Sci. Technol.* **17** (2015) 534
[3] QIU, Z., et al., *Nucl. Fusion* **59** (2019) 066024
[4] HAHM, T.S. and DIAMOND, P.H. *J. Korean Phys. Soc.* **73** (2018) 747
[5] BERK, H.L. and BREIZMAN, B.N. *Phys. Fluids B* **2** (1990) 2246
[6] QIU, Z., et al., *Nucl. Fusion* **59** (2019) 066031
[7] GORELENKOV, N.N., et al., *Plasma Phys. Control. Fusion* **52** (2010) 055014
[8] WHITE, R.B., et al., *Phys. Plasmas* **28** (2021) 012503



28<sup>th</sup> IAEA Fusion Energy Conference (FEC 2020), 10 ~ 15 May 2021, Virtual Event