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Abstract

Bulk ion heating from nonlinear Landau damping of high-n Toroidal Alfvén Eigenmodes (TAEs) excited by energetic ions is studied. Based on the nonlinear saturation level
of high-n TAEs which is confirmed by numerical studies of a wave-kinetic equation incorporating the ion Compton scattering-induced spectral transfer and the particle

trapping by the wave, we assess potentially beneficial effect of bulk ion heating, so-called alpha channeling for ITER DT plasmas using an integrated simulation. The result
indicates that, in its optimistic limit, the anomalous ion heating due to high-n TAEs can compensate the heating reduction due to energetic particle loss.

Motivations

 For high-n TAEs (n = 10) in ITER, the nonlinear mode interaction such as ion Compton
scattering (ICS, or nonlinear Landau damping) can be a dominant mechanism for the
saturation of TAEs [1,2,3].

* Previous analytic studies derived the saturation level of the modes by ICS [1,3] and the
consequent bulk ion heating rate [2].

« We need to investigate how the multiple TAEs evolve dynamically and how significant the

ion heating will be in ITER, which can be a candidate for the alpha-channeling.

-

3. Alpha-channeling via high-n TAEs in ITER

« EP transport and energy channeling by TAEs
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2. Nonlinear evolution of high-n TAEs

- Wave-kinetic equation [1,2] - Integrated simulation in ITER burning plasma
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Eqg. (1) and (2) result in the PP oscillation of the
multiple TAEs (Fig. 2 (b)).

- The nonlinear transfer can sufficiently drive the
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- The EPs are transported by TAEs, and the central plasma heating by EP drops about 1/3.

- The ICS of high-n TAEs induces additional ion heating (alpha-channeling, Fig 6 (b)).
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- The ion heating by alpha-channeling can compensate the collisional ion heating loss b
linearly stable modes such as kinetic TAEs (Fig. 2 (c)). 9 by ab J P 9 Y
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- The transient peak level of the total mode energy
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Since the gap structure varies radially, the mode amplitude Conclusion
evolves in real space as well (Fig. 3 (b)). o
o 10f - The NL evolution of high-n TAEs induced by ICS is investigated.
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Fig. 3 - The ion heating during the spectral transfer, responsible for alpha-channeling, is modeled
- Mode saturation by considering the wave-trapping effect [5] for the predictive simulation.
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