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Motivations

• For high-n TAEs (𝑛 ≳ 10) in ITER, the nonlinear mode interaction such as ion Compton 

scattering (ICS, or nonlinear Landau damping) can be a dominant mechanism for the 

saturation of TAEs [1,2,3].

• Previous analytic studies derived the saturation level of the modes by ICS [1,3] and the 

consequent bulk ion heating rate [2].

• We need to investigate how the multiple TAEs evolve dynamically and how significant the 

ion heating will be in ITER, which can be a candidate for the alpha-channeling.
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2. Nonlinear evolution of high-n TAEs

• Wave-kinetic equation [1,2]

Abstract
Bulk ion heating from nonlinear Landau damping of high-n Toroidal Alfvén Eigenmodes (TAEs) excited by energetic ions is studied. Based on the nonlinear saturation level 

of high-n TAEs which is confirmed by numerical studies of a wave-kinetic equation incorporating the ion Compton scattering-induced spectral transfer and the particle 

trapping by the wave, we assess potentially beneficial effect of bulk ion heating, so-called alpha channeling for ITER DT plasmas using an integrated simulation. The result 

indicates that, in its optimistic limit, the anomalous ion heating due to high-n TAEs can compensate the heating reduction due to energetic particle loss.

3. Alpha-channeling via high-n TAEs in ITER
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- 𝛾𝐿 > 0 modes in the gap grows linearly and transfer the energy to lower 𝜔 modes by ICS.

- 𝛾𝐿 < 0 modes near the lower continuum are linearly stable, but are driven nonlinearly by 

the energy transfer.

- This system exhibits a typical predator-prey (PP) behavior.
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• PP oscillation of TAEs by ICS

- For a parabolic shape of the linear growth rate curve, 

Eq. (1) and (2) result in the PP oscillation of the 

multiple TAEs (Fig. 2 (b)).

- The nonlinear transfer can sufficiently drive the 

linearly stable modes such as kinetic TAEs (Fig. 2 (c)).

- The transient peak level of the total mode energy 

during the bursty behavior is much larger than the 

previously expected NL saturation level.
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[MW] 𝑃𝑎𝑏𝑠
= 𝑃𝛼 + 𝑃𝑁𝐵 − 𝑃𝐸𝑃 ,𝑙𝑜𝑠𝑠  

𝑃𝑎𝑏𝑠 ,𝑒𝑙𝑒𝑐  𝑃𝑎𝑏𝑠 ,𝑖𝑜𝑛  𝑄
= 𝑃𝑓𝑢𝑠 /𝑃𝑖𝑛   

Case 1: Reference (𝑃𝐸𝑃,𝑙𝑜𝑠𝑠 = 0) 150.1 109.3 40.8 10.1 

Case 2: EP transport 121.7 91.0 30.7 8.79 

Case 3: EP transport + channeling 128.5 87.4 41.2 9.64 
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- From the EP flux by [3], we 

can estimate the EP energy 

transfer to TAEs.

- Initially, the modes near the center of the gap are amplified.

- Then, the downward transfer by ICS excites the stable 

modes near the gap boundary.

- Finally, the low-𝜔 modes are damped by the continuum.

- Since the gap structure varies radially, the mode amplitude 

evolves in real space as well (Fig. 3 (b)).

- It can lead to EP avalanches [4] which induce performance 

degradation and a wall damage.

• Mode saturation by considering the wave-trapping effect [5]

- When we take the wave-trapping effect into account, the system 

saturates after decaying oscillations (Fig. 4 (a)).

- The levels normalized to the analytic estimations converge into 

𝑂 1 .

- The saturated energy spectrum (Fig. 4 (b)) shows different 

characteristics according to 𝜈𝑑0, but both are shifted downwards 

from the original linear growth curve.

• EP transport and energy channeling by TAEs

• Integrated simulation in ITER burning plasma

EP transport via ICS [3]
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- The EPs are transported by TAEs, and the central plasma heating by EP drops about 1/3.

- The ICS of high-n TAEs induces additional ion heating (alpha-channeling, Fig 6 (b)).

- The ion heating by alpha-channeling can compensate the collisional ion heating loss by 

the EP transport (𝑃𝑇𝐴𝐸→𝑖𝑜𝑛/𝑃𝐸𝑃,𝑙𝑜𝑠𝑠 > 𝑓𝑖,𝑐𝑜𝑙𝑙 ∼ 0.3).

- In Case 1, the EP energy is transferred to plasmas by coll. slowing down only (𝑄 ≈ 10.1).

- Considering the EP transport (Case 2), the reduced plasma heating by EPs decreases 𝑇𝑖

and so does alpha heating further (𝑄 ≈ 8.79 with 25% reduction of ion heating).

- In Case 3, the ion heating fraction becomes higher by alpha-channeling, which 

compensates the ion heating loss by the EP transport (𝑄 ≈ 9.64).

- The alpha-channeling by TAEs is ~10MW, which is as influential as a single ICRH antenna.

Q=10 ITER 

baseline scenario

Self-consistent 
simulation
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- The NL evolution of high-n TAEs induced by ICS is investigated.

- The ICS shows that the modes evolve with PP bursts that can cause EP avalanches.

- If we consider a weak effect of particle trapping, the system becomes saturated.

- The ion heating during the spectral transfer, responsible for alpha-channeling, is modeled 

for the predictive simulation.

- With the integrated modeling, it is found that the ion heating by the channeling can 

compensate the heating loss by the EP transport in the optimistic limit.

- It is still necessary to consider various factors such as GAM coupling [6], CAE-induced 

channeling [7] and cyclotron resonance of alpha particles [8] in the future.
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