Energetic Particle Transport in Optimized Stellarators

A. Bader 1, C.C. Hegna 1, B.J. Faber 1, D.T. Anderson 1, M. Drevlak 2, S. Henneberg 2, Y. Suzuki 3, J.C. Schmitt 4

1UW-Madison, Madison, WI, USA; 2IPP-Greifswald, Greifswald, Germany; 3FNS, Toki, Japan; 4University of Adelaide, AD, Australia

abader@engr.wisc.edu

IAEA conference 10-15 May 2021 #17158

Motivation
- Alpha particle confinement is a key issue for stellarators
- It is often difficult to compare between configurations
- What features and proxies are best predictive of good energetic particle confinement?

Configurations
- Configurations scaled to have ARIES-CS volume (450 m³ and field (5.7 T)
- 3 QHs, 3 QAs, 1 QO (W7-X), 2 Heliotrons (LHD) and 1 Tokamak (ITER) are scaled and compared

Collisional Calculations
- When collisions added, QHs still perform well, but not as well compared to other configurations
- Wistell-A, LHD-inward, and W7-X all perform nearly equally with collisions
- ITER outperforms best QHs but only by a small margin
- Metric analysis shows collisional energy loss is correlated with \(\Gamma \) and (less so) with quasisymmetry

Conclusions
- LHD-inward, W7-X, and Wistell-A all perform similarly in collisional calculations but differently in collisionless results:
 - LHD: no prompt losses, all particles lost eventually, but slowly (improves relatively with collisions)
 - Wistell-A: some prompt losses, occur near trapped passing boundary where diffusion is high (losses increase with collisions)
 - W7-X: some prompt losses, occur in deeply trapped regions where diffusion is low (losses do not increase with collision)
- LHD inward-shifted configuration has smoothly varying field along a field line and alignment of minima
- Prompt losses are dangerous for plasma facing components
- Slower losses are often tolerable
- Heating profiles may differ (future work)

References
[8] abader@engr.wisc.edu

Work for this paper was supported by DE-FG02-93ER54222 and UW 2020 135AAD3116