
0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5
0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Use of FAR3d eigensolver option to survey 
all unstable modes as q-profile changes

Nonlinear growth/saturation of magnetic energy; nonlinear saturated poloidal 
magnetic field fluctuations with mode structures – predator prey cycle: coherent 

structure => shearing => radial collapse => reform coherent structure,…

Zonal flow fluctuations correlate most 
directly with EP transport intermittency

Spectrogram of magnetic field fluctuations shows similar dominant frequency (~100 kHz) as expt.

Nonlinear dynamics and stability surveys of
energetic particle instabilities

D. A. Spong, 1 M. Van Zeeland, 2 W. W. Heidbrink, 3 X. Du, 2 J. Varela, 4 L. Garcia, 4 Y. Ghai1
1Oak Ridge National Laboratory, 2General Atomics, 

3University of California – Irvine, 4 University Carlos III de Madrid
spongda@ornl.gov

• Energetic particle (EP) populations are inherent to fusion plasmas. Understanding
EP driven instabilities is crucial since they can lead to degraded heating efficiency
and damage to plasma-facing components. Global nonlinear MHD-kinetic
simulations using the FAR3d model are used here to address 3 important aspects
of energetic particle (EP) transport:
• Dynamical critical gradient fast ion profiles in the presence of zonal flows/currents +
energy exchanges between multiple toroidal modes

• Time interval required for evolution from unstable fast ion profile to relaxed sub-
marginal profiles – profile stiffness effect

• Instability-driven intermittency effects - zonal flow generation/relaxation (predator-
prey) + dynamic energy transfers within coupled multiple toroidal mode system

ABSTRACT
Linear growth rates and continuum plot showing frequency locations; 277 m,n pairs 

retained with n = 0, 1, 2, 3, 4, 5, 6

RESULTS

• One of several Landau closure models in use for energetic particle physics
• FAR3d, TGLF-EP, TAEFL

• Computationally ready for large extended nonlinear problems
• Uses hybrid parallelism (MPI, OpenMP)
•3rd order accurate time stepper for numerical stability
•Only evolves continuum fields – no particle noise

• Treats multi-physics effects consistently
•Profile relaxation; Zonal flows/currents
•Nonlinear energy transfers between coupled modes
•Collective transport effects related to temporal/spatial phase alignment
between fast ion density perturbations and potential/magnetic field
fluctuations:

BACKGROUND

Pulsed beam DIII-D experiments provide good test case for EP
instability enhanced transport studies
Expt. beam decay time is 8 to 10 msec << 𝜏SD

- from fluctuation and INPA decay rates
Beam decay time ~ 7000𝜏Alfvén >> 𝜏Alfvén

METHODS / IMPLEMENTATION

• The feasibility of long-time scale nonlinear simulations using the FAR3d model
has been demonstrated => predicts similar frequency spectra and can address
experimentally relevant time-scales

• Beampulse experiments provide a good test-bed for EP transport analysis
• This model predicts strong intermittency from nonlinear energy transfers and
zonal flow predator-prey phenomena

CONCLUSION
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