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ABSTRAC RESULTS

® Energetic particle (EP) populations are inherent to fusion plasmas. Understanding

Linear growth rates and continuum plot showing frequency locations; 277 m,n pairs

EP driven instabilities is crucial since they can lead to degraded heating efficiency retained withn=0,1,2,3,4,5,6
and damage to plasma-facing components. Global nonlinear MHD-kinetic » = . o (%
simulations using the FAR3d model are used here to address 3 important aspects 1 g
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of energetic particle (EP) transport: A 2 i y‘
* Dynamical critical gradient fast ion profiles in the presence of zonal flows/currents + % % e 1
energy exchanges between multiple toroidal modes ’ L K
e Time interval required for evolution from unstable fast ion profile to relaxed sub- I T Ta—) %6 @ @ 8 W0 1m0 i IAVAA N
marginal profiles — profile stiffness effect P/Pecee freeney () P/Pegse
e Instability-driven intermittency effects - zonal flow generation/relaxation (predator- Nonlinear growth/saturation of magnetic energy; nonlinear saturated poloidal
prey) + dynamic energy transfers within coupled multiple toroidal mode system magnetic field fluctuations with mode structures — predator prey cycle: coherent
structure => shearing => radial collapse => reform coherent structure,...
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* One of several Landau closure models in use for energetic particle physics @B
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e FAR3d, TGLF-EP, TAEFL H ,
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e Computationally ready for large extended nonlinear problems 5 s s
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e Uses hybrid parallelism (MPI, OpenMP) 310* B me | 2ime | 22
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¢ 3rd order accurate time stepper for numerical stability £ g0 o p o
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¢ Only evolves continuum fields — no particle noise 5 .
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¢ Treats multi-physics effects consistently
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e Profile relaxation; Zonal flows/currents
e Nonlinear energy transfers between coupled modes T e
Spectrogram of magnetic field fluctuations shows similar dominant frequency (~100 kHz) as expt.

e Collective transport effects related to temporal/spatial phase alignment

Simulation

between fast ion density perturbations and potential/magnetic field

fluctuations: 5B
) -
)"ﬂmm
0

Frequency (MHz)

&
Time (ms)

25
‘Time (ms)

Fast ion density depletion by the instability

41 Drives zonal currents

H
and zonal flow/zonal current effects ;
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The nonlinear FAR3d six-field model includes convective and magnetic ,\ZW 002 CON CLUSI o N
nonlinearities (these are indicated in magenta, diffusive terms in blue). § 200
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Generates zonal (n = 0) currents Generates zonal (n =0) flows & ... has been demonstrated => predicts similar frequency spectra and can address
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froquoncy modas, see poster " BE€AM pulse experiments provide a good test-bed for EP transport analysis

IAEA-CN-286/748 of w.w.  ® This model predicts strong intermittency from nonlinear energy transfers and
Heidbrink, et al.

} zonal flow predator-prey phenomena

M ACKNOWLEDGEMENTS

This material is based upon work supported by the U.S. Department of Energy, Office of Science using the DIII-D National Fusion Facility, a
DOE Office of Science user facility, under Awards DE-AC05-000R22725, DE-FC02-04ER54698, and the U.S. DOE SciDAC ISEP Center. This
research used resources of the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of
Science User Facility located at Lawrence Berkeley National Laboratory, operated under Contract No. DE-AC02-05CH11231.

5 Bn(M=0,1=0) => creates local plateau
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