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Higher q,,;, provides several advantages for

advanced tokamak, steady-state scenarios

» High ideal-wall kink mode TRANSP Run ID 1752852212
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* New off-axis NBl power has been incorporated into high gmin
discharges
— Broader pressure profile

- Experimental B is limited by n=2 tearing modes
— n=2 ideal-wall gy stability limits are lower than the n=1 limits

« Higher stability limits and improved S have been achieved in
plasmas with gmin~1.5 compared to gmin~2



Increased off-axis beam power used for high q,,;,

discharges

175285 180714
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Lower EC power and higher impurity content lead to

change in current density profile

175285 180711
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DIll-D upgraded to add a second off-axis neutral

beam in the co-|; direction

« Previously, the 210°
beam line injected
power along the
midplane in the (oo pocony
counter-l; direction |

 Now the 210° beam
line is permanently
off-axis and steerable
between the co- and e
counter-I, directions S

330 beam
(co-Injection)

150 beam
(co-injection)



n=2 tearing mode forms near 2800 ms

- Tearing mode forms
as NBI power is
increased

* The mode rotates
with the plasma

« Tearing modes form

in a large fraction y LB .
of these plasmas el i |MMM;$MW




Tearing mode stability decreases as a plasma

approaches the ideal-wall stability limit
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Summer student project optimized DCON and

CORSICA parameters for high q,,,;, discharges

Scanned resolution - toroidail,
poloidal, radial

Crop equilibrium at fractional
q value

Current density profile
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Fixing edge g reduced
standard deviation in g limits
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* Old method: st. dev 0.28
 New method: st. dev 0.21

Figure from M. Aslin



n=2 ideal-wall Sy limit lower than the n=1 limit

_Shot 180711

6
« DCON used to find the
ideal-wall gy limits - AN ]
« Calculation uses DIiI-D wall ) e e A
° e _ge o 4+ s HERTN K .
with zero resistivity . Y .
- Tearing mode occurs 4 .;«"i’“\/"%ﬂg\’ N ey q
when the experimental B
approaches the n=2 ideal- 2 Sareetttees’ " et ideal wail| |
wall BN limit = n=2 ideal wall
1 1 1 1 1
* Past research showed that <000 2500 e [-’r’:s‘;° 3500 4000
n=2 stability limits are § e -
. . Minimurm of n=1, 2 stability limits
lower than n=1 limits for predicted with the DIll-D wall
° 4t odelin a n=2 limit
broader pressure profiles e =z imt
Modeling data
3 ‘Ex[)aerlmental n=1 limit
By fda
2k
Fit to modeling data
't Reglon of analyzed 1 J.R.Ferron, et al., Phys. of
of, cxperimentaldata Plasmas 12, 056126 (2005)
10 2.0 25 3.0 3.5 4.0 4.5

Pressure peaking factor, P(0)XP)



Tearing modes occur when plasma is near n = 2 ideal-

wall B, limit
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Larger perturbation required to destabilize the n=1

mode
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Higher g\ achieved with additional off-axis NBl power

in discharge with gmin~1.5

- Recent discharge has 133103 180636
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Higher stability limits for gmin~1.5 discharge

« n=1 ideal-wall g limits ~5
* n=2 ideal-wall g limits ~4

- gmin~1.5 discharge had

smaller gap between the
plasma and the wall
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A downward trend in gmin is observed in multiple

discharges

« Tearing mode onset
indicated by a green
circle

- The peaking factor is
between 2-3 for each
discharge
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TRANSP simulations show more peaked current density

profile with lower EC power
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TGLF used to evolve the
temperature, density, and
current profile

NUBEAM used to simulate the
NBI injection
TORAY used for ECH injection



Loss of EC power reduces bootistrap and ECCD current

- TRANSP used to understand 0.10 0.68
the effects of reduced EC
power

— Simulations run to steady-
state with a range of EC
power 0.06 - -0.64

« EC power reduced from

3.5t0 1.5 MW

— Loss of 80 kA of booftstrap
current

— Loss of 28 kA of ECCD 0.02 1 -0.60
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BALOO indicates that the plasma is near the ideal-

ballooning boundary

1.5
* Lower stability limits for |
higher n modes, as | -
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- DIlI-D beam line modified to provide additional off-axis beam
power

«  Onset of n=2 tearing modes, associated with approach to the
ideal-wall n=2 stability boundary, leads to a degradation in
confinement

*  Qmin~1.5 discharges have higher stability limits and higher g\
compared to discharges with q,,,;,~2

* Recent experiments have difficultly maintaining q,,,;, > 2
— EC power important for maintaining broad current density profile



