The Energy Confinement Evolution at Very High Edge Pedestal in Super H-mode Experiments

by

Andrea M. Garofalo¹, S. Ding², B.A. Grierson³, X. Jian⁴, W.M. Solomon¹, C. Holland⁴, M. Knolker¹, A. Marinoni⁵, J. McClenaghan¹, C.C. Petty¹

¹General Atomics, San Diego, California, 92186-5608, USA
 ²Oak Ridge Associated Universities, Oak Ridge Tennessee, 37830, USA
 ³Princeton Plasma Physics Laboratory, Princeton, New Jersey, 08543, USA
 ⁴University of California at San Diego, San Diego, California 92093, USA
 ⁵Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA

Presented at the 28th IAEA Fusion Energy Conference (FEC 2020) Virtual Event

10-15 May 2021

Energy Confinement Quality the Highest Leverage Parameters for Fusion Capital Cost

Tokamak Core Material Technology Magnet Technology Blanket Technology Power Production/RAM Confinement Quality (H_{98y2}) 1.0 1.9 7 % Strong sensitivity of fusion reactor 0.9 Tritium Breeding Multiplier 1.20 0.50 capital cost to variations in the 40 Thermal Efficiency 0.60 0.25 assumed energy confinement Divertor Heat Flux (MW/m²) 50 quality Neutron Wall Loading (MW/m²) 1.0 6.0 Pulse Length 100000 Use normalized energy Density Limit 1.2 18 0.8 confinement time (H_{98y2}) to TF Bucking Solution Plug Bucked <mark>ຜູ້ອັ</mark> Unbucked compare energy confinement Magnet Type REBCO Nb₃Sn quality Stability Limit 0.75 8 0.60 Reactivity Multiplier 1.5 1.0 - For discharges with diverse Scaled CD Efficiency 1.5 0.5 parameters Tritium Processing Time (hr) 24 [Wade & Leuer, FS&T 2021] Across devices **Blanket Power Multiplier** 1.3 3 Estimated Capital Cost (\$B)

$$H_{98y2} = \tau_{\rm E} / (0.0562 \ I_{\rm P}^{0.93} \ B_{\rm T}^{0.15} n_{\rm e}^{0.41} P_{\rm H}^{-0.69} M^{0.19} R^{1.97} \epsilon^{0.58} \kappa^{0.78})$$

[ITER Physics Basis Chapter 2, NF 1999]

Sensitivity in capital cost as each parameter is independently varied over the range indicated

Higher Pedestal *≠* Higher Confinement

"Super H-mode" plasmas exploit strong plasma shaping to achieve high edge pedestal pressure at high density

- Higher pedestal is not identical to higher confinement
 - i.e. higher pedestal does not necessarily lead to higher confinement
- "higher pedestal → higher confinement" may be an intuitive expectation, and there may be cases that satisfy this expectation
- There are many cases that clearly violate this expectation

Higher Pedestal ≠ Higher Confinement (1)

High β_P scenario

- Same shot,
- same plasma shape,
- same I_P and B_T ,
- same beta,
- same density

Lower pedestal leads to higher confinement

L. Wang (oral), Fri EX/7

S. Ding (oral), Tue EX/1

Higher Pedestal ≠ Higher Confinement (2)

Higher Pedestal \neq Higher Confinement (3)

Recent Super H-mode experiments High triangularity VS. Low triangularity

Lower triangularity \rightarrow lower pedestal (consistent with EPED predictions)

Lower pedestal same confinement (until n=2 mode)

3500

3000

185069

High Rotation (and Related ExB Shear), not High Pedestal, Enables H₉₈>>1 in Super H-mode Experiments

Correlation observed experimentally: energy confinement quality correlates with toroidal rotation, not with pedestal pressure

Causality is revealed by modeling, confirmed by new experiments

Modeling of Super H-mode in ITER predicts $H_{98y2} \sim 1.0-1.1$, Q>10 if Greenwald edge density limit could be overcome

 Like AI scenario, Super H-mode discharges lose attractive confinement at ~standard rotation

High Rotation (and Related ExB Shear), not High Pedestal, Enables H₉₈>>1 in Super H-mode Experiments

Correlation observed experimentally: energy confinement quality correlates with toroidal rotation, not with pedestal pressure

Causality is revealed by modeling, confirmed by new experiments

Modeling of Super H-mode in ITER predicts H_{98y2} ~ 1.0-1.1, Q>10 if Greenwald edge density limit could be overcome

Energy Confinement Does Not Correlate with Pedestal Height

- Typical super H-mode discharge waveforms
 - Fixed plasma shape
 - Some variation in torque, density, Ip, core MHD
- Large torque/particle drives high rotation
- H_{98y2} follows rotation, not pedestal

171323 174788 174809 174811 174741 174742

Very High Confinement Obtained in the Early Phase with Low Pedestal, following Rotation Build-up

- Very high confinement is reached with low pedestal pressure compared to its maximum and follows a strong rotation build-up
- Very peaked profiles of rotation and ion temperature are measured
 - Confinement decreases as T_{i,ped} increases (1.8 keV@1.75 s → 2.2 keV @ 2.5 s)

Confinement Quality is Linearly Correlated with Core Toroidal Rotation

DIII-D #

171323

17474

Higher rotation, higher confinement 30 Ptot, ped (kPa) (a) quality - Pedestal pressure is similar while 20 rotation varies 10 No observation of very high confinement at low rotation in any Ω DIII-D super H-mode experiment b) H_{98y2} n=2 mode with saturated amplitude in some cases 2.0 Higher amplitude with lower rotation Without - "Belt model" [Chang & Callen, NF 1990] 1.5 n=2 mode predicts 13% reduction of confinement in good agreement with empirical .0 observed difference With n=2 mode 0.5 **Empirical low-rotation extrapolation:** $H_{98y2} \sim 1.2$, without core tearing mode $2 \text{ s} \leq \text{time} \leq 4 \text{ s}$ 0.0 200 100 300 400 $V_{\phi,\rho\sim0.4}$ (km/s)

174809

17481

At ~Same Toroidal Rotation: Higher Stored Energy but ~Same H_{98y2} at Higher Pedestal Pressure

- Look at core rotation $V_{\phi, \rho \sim 0.4} = 200 \pm 20$ km/s
- Higher pedestal → same confinement quality
 - Cannot increase the pedestal "for free" in experiment
 - Other parameters have changed to increase pedestal height, resulting in ~constant H_{98y2}

At ~Same Toroidal Rotation: Higher Stored Energy but ~Same H_{98y2} at Higher Pedestal Pressure

- Look at core rotation $V_{\phi, \rho \sim 0.4} = 200 \pm 20$ km/s
- Higher pedestal → same confinement quality
 - Cannot increase the pedestal "for free" in experiment
 - Other parameters have changed to increase pedestal height, resulting in ~constant H_{98y2}

Compare two plasmas at **the** same V_{ϕ} (~250 km/s) and shape:

DIII-D #	174788	171323
P _{ped} (kPa)	31	23
W _{MHD} (MJ)	2.69	1.78
τ_{E} (S)	0.238	0.19
l _p (MA)	1.95	1.58
n _e (10 ¹⁹ m ⁻ ³)	6.9	6.0
P _{inj} (MW)	11.2	9.6
H ₉₈	1.66	1.66

- At fixed rotation, τ_{E} changes in ways that are captured very well by H-factor definition
- H_{98y2} is constant (at fixed rotation)

Core Toroidal Rotation is Linearly Correlated with Torque per Particle, Depending on TM Amplitude (Stationary Phase)

- A rotating tearing mode can exert a significant drag on the plasma rotation
- Discharges with similar MHD amplitude have similar τ_{ϕ}
- Core MHD impact on V_{ϕ} : ~30-40%
- T_{NBI}/n_e impact on V_{ϕ} : ~300-350% (stationary phase)

Rotation is mostly governed by external actuator

The Physics of T_i/T_e is Not Responsible for the Observed Thermal Energy Confinement Quality Change (Stationary Phase)

- T_i/T_e is usually an important parameter in the turbulence and transport study
 - The critical gradient R/L_{Ti,e} ~ 1+T_{i,e}/T_{e,i}
- H_{98y2} decreases with reduced rotation both in the core and at the pedestal, while T_i/T_e stays nearly constant

High Rotation (and Related ExB Shear), not High Pedestal, Enables H₉₈>>1 in Super H-mode Experiments

Correlation observed experimentally: energy confinement quality correlates with toroidal rotation, not with pedestal pressure

Causality is revealed by modeling, confirmed by new experiments

Modeling of Super H-mode in ITER predicts H_{98y2} ~ 1.0-1.1, Q>10 if Greenwald edge density limit could be overcome

TGYRO Modeling Shows Removing E × B Effect Significantly Reduces Energy Confinement

- TGYRO: a transport solver using gyrofluid code TGLF for turbulent transport, NEO for neoclassical transport
- Predicts temperature profiles using experimental fluxes
 - Using full E × B can reproduce experiment temperature profile
 - Turning off E × B leads to a significant drop in the predicted profiles
 - Leaving only ∇p term of E x B has similar result to E × B off case
- Confinement quality drops without E × B
 - $H_{98y2} \sim 1.7$ with E × B
 - $H_{98y2} \sim 1.3$ without E × B
- Same effect when also evolving density

TGYRO Analysis Supports Empirical Low Rotation Extrapolation

- H_{98y2} predicted with no E×B is reduced towards the empirical limit (dashed line) in self-consistent TGYRO-EPED modeling
 - TGYRO: Drop in predicted profiles with no E × B \rightarrow lower β_N
 - − EPED: Lower β_N → Lower pedestal pressure → TGYRO

 P_{ped} decreases 5-7% due to predicted decrease of β_N with no ExB

 Predicted effect of E × B on H₉₈ nearly completely accounts for empirical observations => Other physics effects play small role

CGYRO Nonlinear Modeling also Shows Large Effect of ExB and Small Effect of T_i/T_e

- Large change in normalized ion energy flux is predicted when the E × B effect is removed
- Little effect is predicted when the T_i/T_e ratio is increased from the experimental value, ~1.15, to peak value achieved in discharge, ~1.35
- Other effects, such as fast ion or electromagnetic effects are also predicted to be much smaller than the E×B effect [Xiang Jian et al, to be submitted]

Large Upshift of Nonlinear Critical Gradient for ITG Identified by CGYRO with E × B

- CGYRO: a gyrokinetic code for turbulence simulations
- Target plasma: at low rotation and high rotation
- Other physics effects (T_i/T_e, fast ions and EM stabilization) have smaller impact on γ and Q_i

Enable $E \times B$ Shear in the simulation, $a/L_{Ti,crit-NL}$

- increases 30% in low rotation case
- increases 300% in high rotation case
- Higher rotation, larger upshift by E × B

Higher critical gradient \rightarrow higher a/L_{Ti} at given heat flux \rightarrow higher confinement

Garofalo/IAEA FEC/May 2021

New Experiments with Low torque Throughout Exhibit the Predicted Low-rotation Confinement, H_{98y2} ~1.2

12

- Same shape, density, power, lower torque (and rotation)
- Pedestal pressure slightly lower because of lower $\beta_{\text{N}},$ as predicted

185067 171323

 (\mathbf{f})

→ lower confinement, as predicted

171323 185067

New Experiments with Lower Shaping (Lower Pedestal) Exhibit Same High Confinement at Matching High Rotation

- Lower pedestal → same confinement, until n=2 mode

Pedestal Temperature Scan in TGYRO Modeling Shows No "Core Amplification" from Stiff Transport

- Artificially change temperature boundary condition in TGYRO modeling
 - $T_{i,e,ped} \times 1.3$
 - Pedestal density is not changed
 - Experimental E × B
- Dynamic ion-electron exchange (standard):
 - Temperature increases uniformly: $\delta T = \delta T_{BC}$ (blue lines)
 - No core confinement improvement
- Static ion-electron exchange:
 - Weak core amplification of the boundary (red lines)
 - Could be analogous to experimental cases with very weak ion-electron coupling, for example at low density

High Rotation (and Related ExB Shear), not High Pedestal, Enables H₉₈>>1 in Super H-mode Experiments

Correlation observed experimentally: energy confinement quality correlates with toroidal rotation, not with pedestal pressure

Causality is revealed by modeling, confirmed by new experiments

Modeling of Super H-mode in ITER predicts H_{98y2} ~ 1.0-1.1, Q>10 if Greenwald edge density limit could be overcome

ITER Super H-mode Modeling Shows Q>10 at Pedestal Density above Greenwald Fraction, but H₉₈≤1.1

- Q≤10 predicted within the pedestal density Greenwald limit
- H_{98y2}~0.8-0.85 for flat n_e cases
- Predicted n_e cases have ~30% higher Q, thus may have H_{98y2}~1.0-1.1

Improvement in Q at higher pedestal density due to higher core density, NOT to higher energy confinement time

High Rotation (and Related ExB Shear), not High Pedestal, Enables H_{98y2}>>1 in Super H-mode Experiments

- Correlation observed experimentally: energy confinement quality correlates with toroidal rotation instead of pedestal pressure in super H-mode experiments on DIII-D
- Causality is revealed by modeling
 - Without E × B, TGYRO predicts similar confinement quality to empirical low rotation limit
 - Large upshift of nonlinear critical gradient for ITG identified by GK modeling with E × B, showing the governing physics in the core
 - E × B effect explains most confinement variation observed in Super H-mode experiments
- Dedicated experiment to test role of pedestal, shows excellent agreement with "predict first" calculations (H_{98y2} = 1.2 at low rotation)
- Self-consistent transport/equilibrium modeling predicts ITER operating in Super H-mode could achieve Q~10 and H_{98y2} ~ 1.1 with pedestal density at Greenwald limit
 - Q>10 by exceeding the pedestal density Greenwald limit (still with $H_{98y2} \sim 1.1$)

