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Tokamaks can Achieve High Performance Through an Edge 
Transport Barrier (H-mode Pedestal)

• H-mode is the typical planned 
operational mode of tokamaks due to 
the superior energy confinement

• What mechanisms are responsible for 
transport in the pedestal, how do they 
project to larger devices (i.e ITER)?

• Poster is focused on a piece of this 
puzzle, ion heat transport, using new 
direct meas of D+ properties

L-mode

H-mode

A. W. Leonard, PoP, 2014
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⦁ Direct main-ion temperature measurements resolve historical issues calculating 
ion heat flux (Qi) in the pedestal region on DIII-D

⦁ DIII-D collisionality scan to study ion thermal transport vs 𝜈*
– Scan by varying heating power and fueling
– Doubling of Qi and increased density fluctuations in pedestal →low 𝜈*

⦁ Details of the power flow in steep gradient region captured using neoclassical 
(NEO) and nonlinear gyrokinetic simulations (CGYRO)
– Qi is carried by both collisions and electrostatic ion scale turbulence
– Ion scale turbulence increasingly important at lower 𝜈*
– Nature of turbulence changes moving to low 𝜈*, broader wavenumber spectrum, 

weaker sensitivity to ExB shear, and strong dependence on a/Ln

Overview of Results
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Previous Work Has Shown Mixed Importance of Neoclassical 
and Ion-Scale Driven Ion Heat Flux in the Pedestal

• AUG: pedestal 𝛘i mostly neoclassical1
– Qi, Qe based on impurity ion temperatures

• JET-ILW: Role of ion-scale turbulent transport 
in constraining pedestal temperature2

• DIII-D: Limited analysis due to challenges 
and anomalies when setting Ti=TC6+
– 𝛘i<~ neocl.3 

• Direct meas of the D+ properties using 
main-ion CER (MICER)4,5,6,7 used in this work
– Improved Qi, Qe from power balance

[1] E. Viezzer, NF, 2017
[2] D. Hatch, NF, 2017, 2019
[3] J. Callen, PoP, 2010 

At neocl. level

[4]B. A. Grierson, RSI, 2012 [5] B. A. Grierson, RSI, 2016
[6]S. R. Haskey, RSI, 2016 [7] S. R. Haskey, RSI, 2018
B. Grierson DOE ECA 
(https://sites.google.com/pppl.gov/briangrierson/work/eca)

[1]

https://sites.google.com/pppl.gov/briangrierson/work/eca
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• Ped top offset, and divergence near separatrix1

– Unexpected, rapid species therm eq time
– Large effects on ∇Ti and power balance Qi, Qe

• Ped top offset largely explained by Zeeman+fine 
structure broadening2 affecting TC6+

• Divergence at edge not completely understood
– C6+ dominated by higher energy particles with wide 

orbits from pedestal top3, D+ cooled by charge 
exchange with edge neutrals, etc…

• Work shown in this poster, uses direct TD+ 
measurement

[1] S. R. Haskey, PPCF, 2018
[2] A. Blom, PPCF, 2002
[3] D. Battaglia, PoP, 2014

Main-Ion CER (MICER) Has Revealed Differences Between D+ and 
Impurity Edge Temperatures

Zeeman+FS
Corrected

Ped top 
offset

Diverge 
at edge

TC6+

Te

TD+

TC6+

Te

TD+ Diverge 
at edge
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Calculating Qi, Qe more challenging than Q 

• Species dependent sources and sinks
– NBI heating (e, i), ECH (e), Ohmic (e), etc...
– Radiation (e), charge exchange losses (i), etc...

• Ion-electron collisional energy exchange Qie
– ~neni(ΔT)/Te

3/2 affects both Qi and Qe
– Term can become dominant in the pedestal, need 

accurate Ti, Te profiles

Accurate Ion Temperature Profiles Required to Infer Qi, 
Qe From Interpretive Power Balance Using TRANSP1 

Using Ti=TC6+ for power 
balance often led to 
physically suspicious 

negative Qi in pedestal

0.0 1.00.2 0.4 0.6 0.8
𝛒

TRANSP

[1] J. Breslau, et al, 2018
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Historical Issue of Negative Ion Heat Fluxes Resolved Using MICER 
TD+ Measurements 

• Using main-ion measurements resolves 
negative Qi
– Most important for higher density, low 

temperature plasmas - amplifies effect 
of ΔT errors on Qie

• Qi, Qe are essential in several research 
areas
– Comparison with theories of different 

transport mechanisms1, Qi role in L-H2, 
power flow into the SOL

Negative/inward
 ion power flow??

Plausible positive 
value

[1] M. Kotschenreuther, NF, 2019
[2] F. Ryter, NF, 2014

TRANSP
S. R. Haskey, EPS proceedings, 2019

TRANSP
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⦁ Direct main-ion temperature measurements resolve historical issues calculating 
ion heat flux (Qi) in the pedestal region on DIII-D

⦁ DIII-D collisionality scan to study ion thermal transport vs 𝜈*
– Scan by varying heating power and fueling
– Doubling of Qi and increased density fluctuations in pedestal →low 𝜈*

⦁ Details of the power flow in steep gradient region captured using neoclassical 
(NEO) and nonlinear gyrokinetic simulations (CGYRO)
– Qi is carried by both collisions and electrostatic ion scale turbulence
– Ion scale turbulence increasingly important at lower 𝜈*
– Nature of turbulence changes moving to low 𝜈*, broader wavenumber spectrum, 

weaker sensitivity to ExB shear, and strong dependence on a/Ln
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Pedestal Ion Thermal Transport vs 𝜈* (Approaching ITER) Assessed Using 
MICER Measurements on DIII-D ‘Collisionality Scan’ Experiment 

• ITER similar shape, Ip=1MA, Bt=-2T

• 𝜈* scan by varying input power and fueling
– Trade off between n and T at similar P
– Not a dimensionless scan

• An order of magnitude variation in ped top 𝜈i*, 
1.2 to 0.1 (approaching ITER) 
– P:2.7→5MW, 𝜈*:1.2→ 0.1, ρ*:0.007→0.012,

q95: 5.8→6, 𝜏e:230→150ms, H98y2~1.4,
Zeff:1.9 → 2.4, Pe

ped:2.5→3.5kPa

• Higher 𝜈i* (~1.2), Medium 𝜈i* (~0.4), Low 𝜈i* (~0.1)

Analysis
window
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• ELM synchronized profiles (80-95%) from 
300ms time window used for power 
balance analysis
– Quasi-stationary saturated profiles just 

before the ELM

• Higher 𝜈i* (~1.2), Medium 𝜈i* (~0.4),
Low 𝜈i* (~0.1)
– Ped top ne: 4.5→2.3e19m-3

– Ped top T: 550→1500eV

• Analysis performed using OMFIT1

TD+TC6+

ne Te

[1] O. Meneghini, NF, 2015
https://omfit.io

Pedestal Ion Thermal Transport vs 𝜈* (Approaching ITER) Assessed Using 
MICER Measurements on DIII-D ‘Collisionality Scan’ Experiment 
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Moving to Low 𝜈* Pedestals Required Increased Power, Results in 
Doubling of Qi 

[1] J. Breslau, et al, 2018

Ion Heat Flux

𝜈*~0.1

𝜈*~0.4

𝜈*~1.2

• ELM synchronized profiles (80-95%) from 
300ms time window used for power 
balance analysis
– Quasi-stationary saturated profiles just 

before an ELM

• Profiles used as inputs to TRANSP1 for 
power balance calculations

• Higher input power required to get to 
low 𝜈*
– Ion heat flux is larger for low 

collisionality

See K. Barada Ex/2-951, and
S. Banerjee P1-939 for more details on 

inter-ELM behaviour
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⦁ Direct main-ion temperature measurements resolve historical issues calculating 
ion heat flux (Qi) in the pedestal region on DIII-D

⦁ DIII-D collisionality scan to study ion thermal transport vs 𝜈*
– Scan by varying heating power and fueling
– Doubling of Qi and increased density fluctuations in pedestal →low 𝜈*

⦁ Details of the power flow in steep gradient region captured using neoclassical 
(NEO) and nonlinear gyrokinetic simulations (CGYRO)
– Qi is carried by both collisions and electrostatic ion scale turbulence
– Ion scale turbulence increasingly important at lower 𝜈*
– Nature of turbulence changes moving to low 𝜈*, broader wavenumber spectrum, 

weaker sensitivity to ExB shear, and strong dependence on a/Ln

Overview of Results
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Interplay between fluxes (sources and sinks) and 
transport (NC+Turb) sets the gradients (→profiles)

1. Neoclassical (NEO1): collisional transport, mainly Γ & Qi, 
‘irreducible’ base level of transport

2. MHD-like turbulent transport 
– KBM driven by and clamps ∇p, transport in all channels
– Identified with CGYRO2

– Part of EPED3 model used to predict pressure pedestal 
height & width

3. Drift-wave turbulent transport (nonlinear CGYRO2)
– ITG/TEM: ion scale ES, transport all channels
– ETG: electron scale ES, mainly Qe
– MTM: ion scale EM, mainly Qe

What are the Dominant Inter-ELM Transport Mechanisms, Do They 
Change Moving to Lower 𝜈*?

Fluxes

Tr
an

sp
or

t

Profiles

[1] E. A. Belli, PPCF, 2008 [3] P. Snyder, PoP, 2012
[2] J. Candy, J Comp Phys, 2016
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BES Fluctuations Suggest Increased Importance of Transport by Ion 
Scale Fluctuations at low 𝜈*

• Beam emission spectroscopy1 shows increased 
ion scale broadband fluctuations for low 𝜈* case2

– Role ion scale fluctuations in the pedestal?

BES
[1] Z. Yan, PoP, 2011

See K. Barada Ex/2-951 for more details 
on inter-ELM fluctuations
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NEO2 Simulations Show Significant Neoclassical (NC) Qi, but Similar 
Level Across Shots - Qi Increasingly Anomalous at Low 𝜈*

• Beam emission spectroscopy1 shows increased 
ion scale broadband fluctuations for low 𝜈* case
– Role ion scale fluctuations in the pedestal?

• NC Qi similar going from high 𝜈* (~plateau 
regime) to low 𝜈* (banana regime)
– Reduction in 𝜒i

NC (plateau → banana) offset by 
increase in ∇Ti

• Does not match increase seen in Expt Qi at low 
𝜈* (banana regime)
– Qi transport not at the ‘irreducible base level’ - 

additional transport mechanisms at play
– This is different from the results seen on AUG where 

Qi was at the neoclassical level across a range of 𝜈*

[1] Z. Yan, PoP, 2011
[2] E. A. Belli, PPCF, 2008
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High 𝜈*: CGYRO1 Simulations Show KBM Close to Threshold, Low-k 
Electrostatic Turbulence Fluxes Significant

[1] J. Candy, J Comp Phys, 2016

G
B

G
B

High 𝜈*, ρ=0.94
• Pedestal within 𝛃e+15 % of KBM threshold 

(linear CGYRO1 scans)

• Nonlinear ion scale CGYRO, low k 
wavenumber distribution, kθρs~0.15
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NC

i-ES

NC

i-ES

High 𝜈*, ρ=0.94 

High 𝜈*: Simulated Ion Heat Flux is Dominantly Neoclassical with 
Small Contribution from Ion Scale Electrostatic Turbulence

[1] J. Candy, J Comp Phys, 2016

e-ES
i-ES

e-ES

• Pedestal within 𝛃e+15 % of KBM threshold 
(linear CGYRO1 scans)

• Nonlinear ion scale CGYRO, low k 
wavenumber distribution, kθρs~0.15

• Qi: ~80/20 neoclassical/ion scale ES
– Qe is dominated by i-scale electrostatic 

(ES) turbulence, some e-scale
– Minimal EM contributions
– Additional fluxes possibly due to KBM
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High 𝜈*: Simulated Ion Heat Flux is Dominantly Neoclassical with 
Small Contribution from Ion Scale Electrostatic Turbulence

[1] J. Candy, J Comp Phys, 2016

NC

i-ES

NC

i-ES

High 𝜈*, ρ=0.94 

• Pedestal within 𝛃e+15 % of KBM threshold 
(linear CGYRO1 scans)

• Nonlinear ion scale CGYRO, low k 
wavenumber distribution, kθρs~0.15

• Qi: ~80/20 neoclassical/ion scale ES
– Qe is dominated by i-scale electrostatic 

(ES) turbulence, some e-scale
– Minimal EM contributions
– Additional fluxes possibly due to KBM

• Dominantly sensitive to ExB shear and a/Ln
– ±20% sensitivity scan for NEO+i-scale 

CGYRO
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High 𝜈*: Simulated Ion Heat Flux is Dominantly Neoclassical with 
Small Contribution from Ion Scale Electrostatic Turbulence

High 𝜈* case: Simulations suggest 
Qi dominated by NC with some ion 
scale ES contribution, and possibly 

KBM

• Pedestal within 𝛃e+15 % of KBM threshold 
(linear CGYRO1 scans)

• Nonlinear ion scale CGYRO, low k 
wavenumber distribution, kθρs~0.15

• Qi: ~80/20 neoclassical/ion scale ES
– Qe is dominated by i-scale electrostatic 

(ES) turbulence, some e-scale
– Minimal EM contributions
– Additional fluxes possibly due to KBM

• Dominantly sensitive to ExB shear and a/Ln
– ±20% sensitivity scan for NEO+i-scale 

CGYRO

[1] J. Candy, J Comp Phys, 2016

NC NC

High 𝜈*, ρ=0.94 

i-ES
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Low 𝜈*: CGYRO Simulations, Broad Low-k Electrostatic Turbulence 
Fluxes Significant, KBM far from Threshold

G
B

G
B

Low 𝜈*, ρ=0.94
• Pedestal far from KBM threshold 𝛃e+35 %, 

except at foot of pedestal (linear CGYRO 
scans)

• Nonlinear ion scale CGYRO, broad 
wavenumber distribution, kθρs~0.5
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Low 𝜈*: Total Heat Flux Close to Experimental Value, Simulated Ion 
Heat Flux 50/50 Neoclassical, Ion Scale Electrostatic

Low 𝜈*, ρ=0.94

NC
i-ESi-ES

NC

i-EM

i-EM

i-ES

e-ES

e-ES

• Pedestal far from KBM threshold 𝛃e+35 %, 
except at foot of pedestal (linear CGYRO 
scans)

• Nonlinear ion scale CGYRO, broad 
wavenumber distribution, kθρs~0.5

• Total NC+turb heat flux (Qtot) close to expt Q
– Qe dominated by i-scale electrostatic (ES) 

turbulence, some EM and e-scale
– Qi: ~50/50 neoclassical/ion scale ES Po
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Low 𝜈*: Total Heat Flux Close to Experimental Value, Simulated Ion 
Heat Flux 50/50 Neoclassical, Ion Scale Electrostatic

Low 𝜈*, ρ=0.94

NC
i-ES

i-ES

NC

• Pedestal far from KBM threshold 𝛃e+35 %, 
except at foot of pedestal (linear CGYRO 
scans)

• Nonlinear ion scale CGYRO, broad 
wavenumber distribution, kθρs~0.5

• Total NC+turb heat flux (Qtot) close to expt Q
– Qe dominated by i-scale electrostatic (ES) 

turbulence, some EM and e-scale
– Qi: ~50/50 neoclassical/ion scale ES

• Dominantly sensitive to a/Ln, and weakly 
sensitive to ExB shear

– ±20% sensitivity scan for NEO+i-scale CGYRO
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Low 𝜈*: Total Heat Flux Close to Experimental Value, Simulated Ion 
Heat Flux 50/50 Neoclassical, Ion Scale Electrostatic

Low 𝜈* case: Simulations 
suggest Qi dominated by 

combination of NC and ion 
scale ES turb

Low 𝜈*, ρ=0.94

NC
i-ES

i-ES

NC

• Pedestal far from KBM threshold 𝛃e+35 %, 
except at foot of pedestal (linear CGYRO 
scans)

• Nonlinear ion scale CGYRO, broad 
wavenumber distribution, kθρs~0.5

• Total NC+turb heat flux (Qtot) close to expt Q
– Qe dominated by i-scale electrostatic (ES) 

turbulence, some EM and e-scale
– Qi: ~50/50 neoclassical/ion scale ES

• Dominantly sensitive to a/Ln, and weakly 
sensitive to ExB shear

– ±20% sensitivity scan for NEO+i-scale CGYRO
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ρ=0.94: steep gradient region

• Both neoclassical and 
ion scale ES transport 
important for Qi

• Ion scale ES turbulence 
increasingly important at 
low 𝜈* (Qi NC/ES
80/20 → 50/50)

• Moving to low 𝜈*: KBM 
further from instability, 
broader k distribution 
with strong sensitivity to 
a/Ln and weaker 
sensitivity to ExB shear

Ion Scale Electrostatic Turbulence Increasingly Important for Pedestal 
Ion Thermal Transport at Lower 𝜈*

Low 𝜈* High 𝜈* 

i-ES

NC
i-ES
NC
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Summary
• Historical issues calculating ion heat flux (Qi) in 

the pedestal region on DIII-D resolved using direct 
main-ion temperature measurements
– ∇Ti , Qi, Qe: stronger test of transport models

• Higher input power required to get low 𝜈* on 
DIII-D, doubling of Qi in the pedestal, increased 
ion scale fluctuations (BES)

• Details of total power flow and importance of both 
neoclassical and ion scale ES turbulence 
captured with NEO+nonlinear CGYRO
– Differences in the Qi, Qe split

• Ion scale electrostatic turbulence increasingly 
important at low 𝜈*

Low 𝜈* 

i-ES

NC
i-ES
NC


