Main-ion Thermal Transport in High Performance DIII-D Edge Transport Barriers

S. R. Haskey¹

A. Ashourvan¹, B. A. Grierson¹, Z. Yan⁵, C. Chrystal², E. Belli², J. Candy² S. Banerjee⁴, K. Barada³, J. Chen³, R. J. Groebner², M. Knolker², G. Kramer¹, F. Laggner¹, R. Nazikian¹, T. Rhodes³, M. Van Zeeland²

1. Princeton Plasma Physics Laboratory, Princeton, NJ

- 2. General Atomics, San Diego, CA
- 3. University of California, Los Angeles, CA
- 4. College of William & Mary, VA
- 5. University of Wisconsin, Madison, WI

Presented at the 28th IAEA FEC

Nice, France

May, 2021

Tokamaks can Achieve High Performance Through an Edge Transport Barrier (H-mode Pedestal)

- H-mode is the typical planned operational mode of tokamaks due to the superior energy confinement
- What mechanisms are responsible for transport in the pedestal, how do they project to larger devices (i.e ITER)?
- Poster is focused on a piece of this puzzle, ion heat transport, using new direct meas of D+ properties

A. W. Leonard, PoP, 2014

Overview of Results

- Direct main-ion temperature measurements resolve historical issues calculating ion heat flux (Qi) in the pedestal region on DIII-D
- DIII-D collisionality scan to study ion thermal transport vs v^*
 - Scan by varying heating power and fueling
 - Doubling of Qi and increased density fluctuations in pedestal \rightarrow low v^*
- Details of the power flow in steep gradient region captured using neoclassical (NEO) and nonlinear gyrokinetic simulations (CGYRO)
 - Qi is carried by both collisions and electrostatic ion scale turbulence
 - Ion scale turbulence increasingly important at lower v^*
 - Nature of turbulence changes moving to low v^* , broader wavenumber spectrum, weaker sensitivity to ExB shear, and strong dependence on a/Ln

Previous Work Has Shown Mixed Importance of Neoclassical and Ion-Scale Driven Ion Heat Flux in the Pedestal

- AUG: pedestal χ_i mostly neoclassical¹
 - Qi, Qe based on impurity ion temperatures
- JET-ILW: Role of ion-scale turbulent transport in constraining pedestal temperature²
- DIII-D: Limited analysis due to challenges and anomalies when setting T_i=T_{C6+}
 - χ_i<~ neocl.³
- Direct meas of the D+ properties using main-ion CER (MICER)^{4,5,6,7} used in this work

Improved Qi, Qe from power balance

At neocl. level

E. Viezzer, NF, 2017
 D. Hatch, NF, 2017, 2019
 J. Callen, PoP, 2010

[4]B. A. Grierson, *RSI*, 2012 [5 [6]S. R. Haskey, *RSI*, 2016 [7 B. Grierson DOE ECA

[5] B. A. Grierson, *RSI*, 2016 [7] S. R. Haskey, *RSI*, 2018

S. R. Haskey/IAEA FEC/May 2021

(https://sites.google.com/pppl.gov/briangrierson/work/eca)

Main-Ion CER (MICER) Has Revealed Differences Between D+ and Impurity Edge Temperatures

- Ped top offset, and divergence near separatrix¹
 - Unexpected, rapid species therm eq time
 - Large effects on ∇T_i and power balance Qi, Qe
- Ped top offset largely explained by Zeeman+fine structure broadening² affecting T_{C6+}
- Divergence at edge not completely understood
 - C⁶⁺ dominated by higher energy particles with wide orbits from pedestal top³, D+ cooled by charge exchange with edge neutrals, etc...
- Work shown in this poster, uses direct T_{D+} measurement

Accurate Ion Temperature Profiles Required to Infer Qi, Qe From Interpretive Power Balance Using TRANSP¹

Calculating Qi, Qe more challenging than Q

- Species dependent sources and sinks
 - NBI heating (e, i), ECH (e), Ohmic (e), etc...
 - Radiation (e), charge exchange losses (i), etc...
- Ion-electron collisional energy exchange Qie
 - $\sim n_e n_i (\Delta T) / T_e^{3/2}$ affects both Qi and Qe
 - Term can become dominant in the pedestal, need accurate Ti, Te profiles

Historical Issue of Negative Ion Heat Fluxes Resolved Using MICER T_{D+} Measurements

- Using main-ion measurements resolves negative Qi
 - Most important for higher density, low temperature plasmas - amplifies effect of ΔT errors on Qie
- Qi, Qe are essential in several research areas
 - Comparison with theories of different transport mechanisms¹, Qi role in L-H², power flow into the SOL

Overview of Results

- Direct main-ion temperature measurements resolve historical issues calculating ion heat flux (Qi) in the pedestal region on DIII-D
- DIII-D collisionality scan to study ion thermal transport vs v^*
 - Scan by varying heating power and fueling
 - Doubling of Qi and increased density fluctuations in pedestal \rightarrow low v^*
- Details of the power flow in steep gradient region captured using neoclassical (NEO) and nonlinear gyrokinetic simulations (CGYRO)
 - Qi is carried by both collisions and electrostatic ion scale turbulence
 - Ion scale turbulence increasingly important at lower v^*
 - Nature of turbulence changes moving to low v^* , broader wavenumber spectrum, weaker sensitivity to ExB shear, and strong dependence on a/Ln

Pedestal Ion Thermal Transport vs v^* (Approaching ITER) Assessed Using MICER Measurements on DIII-D 'Collisionality Scan' Experiment

- ITER similar shape, Ip=1MA, Bt=-2T
- v* scan by varying input power and fueling
 - Trade off between n and T at similar P
 - Not a dimensionless scan
- An order of magnitude variation in ped top v_i^* , 1.2 to 0.1 (approaching ITER)
- Higher v_i^* (~1.2), Medium v_i^* (~0.4), Low v_i^* (~0.1)

Pedestal Ion Thermal Transport vs v^* (Approaching ITER) Assessed Using MICER Measurements on DIII-D 'Collisionality Scan' Experiment

- ELM synchronized profiles (80-95%) from 300ms time window used for power balance analysis
 - Quasi-stationary saturated profiles just before the ELM
- Higher v_i* (~1.2), Medium v_i* (~0.4), Low v_i* (~0.1)
 - Ped top ne: $4.5 \rightarrow 2.3 \text{e} 19 \text{m}^{-3}$
 - Ped top T: $550 \rightarrow 1500eV$
- Analysis performed using OMFIT¹

Moving to Low v^* Pedestals Required Increased Power, Results in Doubling of Qi

- ELM synchronized profiles (80-95%) from 300ms time window used for power balance analysis
 - Quasi-stationary saturated profiles just before an ELM
- Profiles used as inputs to TRANSP¹ for power balance calculations
- Higher input power required to get to low v*
 - Ion heat flux is larger for low collisionality

See K. Barada Ex/2-951, and S. Banerjee P1-939 for more details on inter-ELM behaviour

Overview of Results

- Direct main-ion temperature measurements resolve historical issues calculating ion heat flux (Qi) in the pedestal region on DIII-D
- DIII-D collisionality scan to study ion thermal transport vs v^*
 - Scan by varying heating power and fueling
 - Doubling of Qi and increased density fluctuations in pedestal \rightarrow low v^*
- Details of the power flow in steep gradient region captured using neoclassical (NEO) and nonlinear gyrokinetic simulations (CGYRO)
 - Qi is carried by both collisions and electrostatic ion scale turbulence
 - Ion scale turbulence increasingly important at lower v^*
 - Nature of turbulence changes moving to low v^* , broader wavenumber spectrum, weaker sensitivity to ExB shear, and strong dependence on a/Ln

What are the Dominant Inter-ELM Transport Mechanisms, Do They Change Moving to Lower v^* ?

Interplay between fluxes (sources and sinks) and transport (NC+Turb) sets the gradients (\rightarrow profiles)

 Neoclassical (NEO¹): collisional transport, mainly Γ & Qi, 'irreducible' base level of transport

2. MHD-like turbulent transport

- KBM driven by and clamps ∇p , transport in all channels
- Identified with CGYRO²
- Part of EPED³ model used to predict pressure pedestal height & width

3. Drift-wave turbulent transport (nonlinear CGYRO²)

- ITG/TEM: ion scale ES, transport all channels
- ETG: electron scale ES, mainly Qe
- MTM: ion scale EM, mainly Qe

[3] P. Snyder, PoP, 2012 S. R. Haskey/IAEA FEC/May 2021

BES Fluctuations Suggest Increased Importance of Transport by Ion Scale Fluctuations at low v^*

- Beam emission spectroscopy¹ shows increased ion scale broadband fluctuations for low v* case²
 - Role ion scale fluctuations in the pedestal?

NEO² Simulations Show Significant Neoclassical (NC) Qi, but Similar Level Across Shots - Qi Increasingly Anomalous at Low v^*

- Beam emission spectroscopy¹ shows increased ion scale broadband fluctuations for low v* case
 - Role ion scale fluctuations in the pedestal?
- NC Qi similar going from high v* (~plateau regime) to low v* (banana regime)
 - Reduction in $\chi_i^{\rm NC}$ (plateau \rightarrow banana) offset by increase in $\nabla {\rm Ti}$
- Does not match increase seen in Expt Qi at low
 v* (banana regime)
 - Qi transport not at the 'irreducible base level' additional transport mechanisms at play
 - This is different from the results seen on AUG where Qi was at the neoclassical level across a range of v*

High v^* : CGYRO¹ Simulations Show KBM Close to Threshold, Low-k Electrostatic Turbulence Fluxes Significant

- Pedestal within βe+15 % of KBM threshold (linear CGYRO¹ scans)
- Nonlinear ion scale CGYRO, low k wavenumber distribution, k_θρ_s~0.15

High v^* : Simulated Ion Heat Flux is Dominantly Neoclassical with Small Contribution from Ion Scale Electrostatic Turbulence

- Pedestal within βe+15 % of KBM threshold (linear CGYRO¹ scans)
- Nonlinear ion scale CGYRO, low k wavenumber distribution, k_θρ_s~0.15
- Qi: ~80/20 neoclassical/ion scale ES
 - Qe is dominated by i-scale electrostatic
 (ES) turbulence, some e-scale
 - Minimal EM contributions
 - Additional fluxes possibly due to KBM

High v^* : Simulated Ion Heat Flux is Dominantly Neoclassical with Small Contribution from Ion Scale Electrostatic Turbulence

- Pedestal within βe+15 % of KBM threshold (linear CGYRO¹ scans)
- Nonlinear ion scale CGYRO, low k wavenumber distribution, k_θρ_s~0.15
- Qi: ~80/20 neoclassical/ion scale ES
 - Qe is dominated by i-scale electrostatic (ES) turbulence, some e-scale
 - Minimal EM contributions
 - Additional fluxes possibly due to KBM
- Dominantly sensitive to ExB shear and a/Ln
 - ±20% sensitivity scan for NEO+i-scale CGYRO

High v^* : Simulated Ion Heat Flux is Dominantly Neoclassical with Small Contribution from Ion Scale Electrostatic Turbulence

- Pedestal within βe+15 % of KBM threshold (linear CGYRO¹ scans)
- Nonlinear ion scale CGYRO, low k wavenumber distribution, k_θρ_s~0.15
- Qi: ~80/20 neoclassical/ion scale ES
 - Qe is dominated by i-scale electrostatic (ES) turbulence, some e-scale
 - Minimal EM contributions
 - Additional fluxes possibly due to KBM
- Dominantly sensitive to ExB shear and a/Ln
 - ±20% sensitivity scan for NEO+i-scale CGYRO

High v* case: Simulations suggest Qi dominated by NC with some ion scale ES contribution, and possibly KBM

Low v*: CGYRO Simulations, Broad Low-k Electrostatic Turbulence Fluxes Significant, KBM far from Threshold

- Pedestal far from KBM threshold βe+35 %, except at foot of pedestal (linear CGYRO scans)
- Nonlinear ion scale CGYRO, broad wavenumber distribution, $k_{\theta}\rho_{s}$ ~0.5

Low v^* : Total Heat Flux Close to Experimental Value, Simulated Ion Heat Flux 50/50 Neoclassical, Ion Scale Electrostatic

- Pedestal far from KBM threshold βe+35 %, except at foot of pedestal (linear CGYRO scans)
- Nonlinear ion scale CGYRO, broad wavenumber distribution, k_θρ_s~0.5
- Total NC+turb heat flux (Qtot) close to expt Q
 - Qe dominated by i-scale electrostatic (ES) turbulence, some EM and e-scale
 - Qi: ~50/50 neoclassical/ion scale ES

Low v^* : Total Heat Flux Close to Experimental Value, Simulated Ion Heat Flux 50/50 Neoclassical, Ion Scale Electrostatic

- Pedestal far from KBM threshold βe+35 %, except at foot of pedestal (linear CGYRO scans)
- Nonlinear ion scale CGYRO, broad wavenumber distribution, k_θρ_s~0.5
- Total NC+turb heat flux (Qtot) close to expt Q
 - Qe dominated by i-scale electrostatic (ES) turbulence, some EM and e-scale
 - Qi: ~50/50 neoclassical/ion scale ES
- Dominantly sensitive to a/Ln, and weakly sensitive to ExB shear
 - ±20% sensitivity scan for NEO+i-scale CGYRO

Low v^* : Total Heat Flux Close to Experimental Value, Simulated Ion Heat Flux 50/50 Neoclassical, Ion Scale Electrostatic

- Pedestal far from KBM threshold βe+35 %, except at foot of pedestal (linear CGYRO scans)
- Nonlinear ion scale CGYRO, broad wavenumber distribution, k_θρ_s~0.5
- Total NC+turb heat flux (Qtot) close to expt Q
 - Qe dominated by i-scale electrostatic (ES) turbulence, some EM and e-scale
 - Qi: ~50/50 neoclassical/ion scale ES
- Dominantly sensitive to a/Ln, and weakly sensitive to ExB shear
 - ±20% sensitivity scan for NEO+i-scale CGYRO

Low v* case: Simulations suggest Qi dominated by combination of NC and ion scale ES turb

Ion Scale Electrostatic Turbulence Increasingly Important for Pedestal Ion Thermal Transport at Lower v^*

<u>p=0.94: steep gradient region</u>

- Both neoclassical and ion scale ES transport important for Qi
- Ion scale ES turbulence increasingly important at low v* (Qi NC/ES 80/20 → 50/50)
- Moving to low v*: KBM further from instability, broader k distribution with strong sensitivity to a/Ln and weaker sensitivity to ExB shear

Summary

- Historical issues calculating ion heat flux (Qi) in the pedestal region on DIII-D resolved using direct main-ion temperature measurements
 - ∇T_i , Qi, Qe: stronger test of transport models
- Higher input power required to get low v* on DIII-D, doubling of Qi in the pedestal, increased ion scale fluctuations (BES)
- Details of total power flow and importance of both neoclassical and ion scale ES turbulence captured with NEO+nonlinear CGYRO
 - Differences in the Qi, Qe split
- Ion scale electrostatic turbulence increasingly important at low v*

