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Poster Overview

• Gravitationally introduced impurity powders and horizontally launched

granules are injected into DIII-D ITER baseline discharges to determine

effects on baseline impurity concentrations.

• Li aerosol reduces core C by up to 4x, but can be counteracted by

addition of C granules.

• If C granules are introduced first, Li powder has minimal effect

• Addition of Li generates periods of suppressed ELM activity proportional to

the quantity of Li introduction.

• B powder also reduces core C, but not as strongly as Li.

• Experiments generate benchmarking data for transport codes inform

favorable conditions in future tokamaks.
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Motivation : Impurity Transport Differences between NSTX and DIII-D

NSTX Lithiated ELM Free H-modes:

Carbon density starts at ~1% builds to 10% 

nLi ~ .01nC
[3]

DIII-D Li Enhanced H-Modes:

300 msec Elm free pedestal enhancements

nC in core lower than ELMy H-mode levels

nLi ~ 8nC
[1] 

Both results were found to be consistent with 

neoclassical transport theory

Preliminary XGC calculations show both 

results could be explained with a carbon 

threshold effect

PPPL mass injectors at DIII-D used to drive 

specific impurity concentration conditions

DIII-D[1] NSTX[2][3]

Delivery method, Rate Dropper,

18 mg/s

Inter-shot 

evaporation,

150-300 mg

ELMs Delayed Eliminated

PRAD, Impurities without 

ELMs

Steady Increasing

D recycling Unchanged Reduced

Core Li High Low

Edge fluctuations Increased Decreased

Pedestal Width Increased Increased

Pedestal Height Increased Increased

H-factor Increased Increased

[1] T.H. Osborne et al., Nucl. Fusion 55 (2015) 063018

[2] R. Maingi et al., Nucl. Fusion 52 (2012) 083001

[3] F. Scotti et al., Nucl. Fusion 53 (2013) 083001
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Impurity Granule Injector (IGI)

– Granules in reservoir 

gravitationally accelerated

– Rotary impeller stage provides 

high speed horizontal injection 

– New feeder allows quasi-

periodic injections

– Spherical pellets of C(400 

mm), Li (700 mm)

– Up to 150 Hz possible

– 50-120 m/s 

– Midplane injection

Granule Injector provides horizontal injection 
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Impurity Powder Dropper (IPD) provides gravitational upper divertor 

injection

• Multi-impurity injection system based on 

linear piezoelectric powder feeder

• 4 feeders with separate reservoirs (30 ml) 

around central drop tube

• Tested with multiple materials

– B, BN, Li, Si, SiC, Sn…
– particle size 5-100 μm 

– calibrated rates 2-200 mg/s

• Calibrated with accelerometer, while 

optical flow-meter confirms mass 

injection rate

• Injection of stabilized lithium powder & 

boron powder

Boron Nitride BN

A. Nagy et al., Rev. Sci. Instr. 2018
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IPD units installed on AUG, DIII-D, EAST, KSTAR & LHD

Images from first IPD installation on ASDEX Upgrade

• 2.5 m drop tube connects IPD with crown of AUG discharge (blue 

circle)

• Chamber 1 loaded with 5 mm BN powder

• Chamber 2 loaded with 70 mm B powder

BN

B
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Injection timing during impurity injection experiments 

• Series of single impurity and mixed impurity plasmas

• Powder Dropper and Granule Injector triggered during discharge flat-top

• Actuator timings can be swapped to determine primacy effect
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Injection program for impurity transport discharges

• Injections into 9 MW NBI heated ITER 

baseline discharges

• IP = 1.3 MA, BT = -1.73T, q95 = 4.4, 

1.9<bN<2.3

• The core carbon concentration is 

provided by charge exchange 

• Carbon concentration normalized to 

provide unitary baseline for future 

comparisons. 
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Increasing levels of Li injection lead to extended periods of ELM 
free activity

• Da signals show the effect of increasing 

lithium introduction on the ELM cycle 

• Vertical scales for the Da panels are 

arbitrary 

• Bottom panel shows evolution of plasma 

WMHD for the baseline (red) and 25mg/s 

(green) injections 

• Terminating these ELM free sections are 

very large ELMs that can contain up to 

30% of the total stored energy.

• The high power IBS results seem to be  

consistent previously discovered with 

”Bursty Chirping Mode”*

* T.H. Osborne et al., Nucl. Fusion 55 (2015) 063018

Da signals, WMHD Baseline, WMHD 25 mg/s Li Injection
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Results of Li and C single species impurity injection on core 
carbon signals 

• Central line is normalized core 

carbon signal level 

Average of open circles shown in time 

history on previous slide, all signals 

normalized to this level

• Green lines are C concentration 

after Li injection

Signal level decreases slightly with higher 

Li injection amounts

• Red lines are C concentration 

after C granule injection
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Radial profiles of impurity flushing show species specific effects

• Black dotted line in each trace is the 

reference discharge carbon 

concentration profile.  

• Li injection leads to depression of 

carbon concentration over the full 

profile by nearly 3x.

• Profile recovery occurs from inside out

• Extended C granule injection leads to 

full profile elevation followed by core 

peaking of C signal as seen in 

progression from 3.5s to 4.0s. 

• Peaking decays when C stopped
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Modification of core carbon through utilization of multiple 
impurity species 

• Green line is C concentration after Li 

injection at midrange level

• Red lines show that reintroduction of C 

returns the signal to baseline levels

• C injection stopped at t = 5s, Li injection 

continues, core levels return to previous 

suppressed quantities

• Early traces in lower panel show the 

depression of C with Li injection as seen 

in single impurity injection discharges.  

• Once C granules are injected in DIII-D 

176773 (8.5 mg/s Li & 3 mg/s C), profile 

peaks towards the discharge core but 

rho > 0.3 is largely unaffected.
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Mild conditioning indicators after large boron injections

• Injection into discharge 176780 was larger 

than anticipated depositing 140 mg of B 

powder.

• Several subsequent attempts were required 

to recover standard operational conditions

• Once discharges were running again a 

lowered overall Carbon baseline level was 

observed. 

• The numbers in the key at right indicate the 

amount of B injected at the time of the 

measurement. 
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Injection of B powder also reduces core C, but not as efficiently as Li

• Plasma more sensitive to B powder 

injections with regards to H-mode stability

• Boron powder injection levels are also 

harder to regulate leading to only gross 

control of injection rates.  

• Levels 15 mg/s (DIII-D 176788)and above 

lead to a transition out of H-mode and a 

substantial loss of stored energy.

• Like Li, when C granules are injected B 

powder injection is unable to moderate the 

increased level of core carbon. 

• B profiles show evidence of conditioning 

prior to injection and flushing during 

injection
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Reversal of species introduction order leads to 

persistent elevated core carbon 

• Carbon granules introduced 

during the early time

• C and Li combined pulses 

included 1- 3.5s long C 

injection and 1 -2.5s long C 

injection. 

• Stopping the carbon earlier 

did not appear to modify the 

pumpout rate.

• Li injection was unsuccessful at 

flushing the elevated core 

carbon concentration 
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High Z Impurity (Nickel) also reduced during injection

176769 : Baseline Discharge

176777 : Li Powder Injection

176779 : B Powder Injection

176768 : C Granule Injection

In all cases lower levels of Ni 

are observed post injection

Reduction is much stronger 

with Li powder injection

B powder and C granules show 

similar minimal effect
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Conclusions

• These experiments extend previous mass injection programs to high power ITER baseline discharges

and are able to confirm prior observations of ELM free periods (Li injection) and inter-shot

conditioning effects (B Injection)

• While Li and B powder are able to reduce core C concentrations below baseline level they cannot

compensate for the continued introduction of C from the granule injector. Whether this is a result of

the injection method or a threshold effect which shields core C is still under investigation.

• A carbon threshold level beyond which the Li is not able to affect the core could explain

differences in core impurity penetration seen in similar discharges in NSTX and DIII-D

• These measurements providing benchmarking data for neoclassical transport codes such as NEO

and XGC.

• Future simulations will help determine if the corresponding variations in impurity transport can be

explained by present understanding and will inform favorable transport conditions in future

tokamaks.
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Introduction of impurities has been shown in many cases to improve plasma 
performance and enhance wall conditions in multiple devices 

A global program of controlled impurity injection


