High-energy fast ions drive BAEs unstable but not BAAEs

W.W. Heidbrink* (UC Irvine) with M. Van Zeeland, M. Austin, A. Bierwage, Liu Chen, G.J. Choi, N.A. Crocker, X.D. Du, P. Lauber, Z. Lin, G. McKee, D. Spong, and the DIII-D Team

*Bill.Heidbrink@uci.edu Presented at FEC2020

- 1. Heidbrink et al., 'BAAE' instabilities observed without fast ion drive, NF 61 (2021) 016029
- 2. Heidbrink et al., Stability of beta-induced Alfvén eigenmodes (BAE) in DIII-D, NF 61 (2021) submitted.
- 3. Gyungjin Choi et al., Gyrokinetic simulation of low-frequency Alfvénic modes in DIII-D tokamak, NF 61 (2021) in press.

Conclusions

- 1. Beta-induced Alfvén eigenmodes (BAE) are driven unstable through resonances with high-energy (~ 80 keV) beam ions
- 2. BAEs are more unstable near rational values of qmin
- 3. The modes previously called Beta-induced Alfvén-acoustic eigenmodes (BAAE) were misidentified—we now call them low frequency modes (LFM)
- 4. LFMs are <u>not</u> driven by high-energy fast ions
- 5. LFMs occur near rational values of qmin in plasmas with high electron temperature but low beta
- 6. BAE mode properties are adequately described by established theory
- 7. LFMs are probably a low frequency reactive instability of predominately Alfvénic polarization
- 8. BAEs & LFMs are as unstable in hydrogen plasmas as deuterium plasmas

Fast-ion driven low frequency modes are dangerous

- Modes with frequencies below RSAEs are often unstable on existing devices
- Empirically, they are correlated with substantial fastion transport
- Theoretically,

$$n \Delta E = \omega \Delta P_{\phi}$$

- *n* toroidal mode number
- ΔE energy exchanged with the wave
- ω wave frequency
- ΔP_{ϕ} change in toroidal canonical angular momentum

 \rightarrow if a low-frequency mode effectively resonates with a fast ion, the spatial transport is large.

Goal of Dedicated Experiment

Understand the stability of beta-induced Alfvén-acoustic eigenmodes (BAAE) and beta-induced Alfven eigenmodes (BAE)

The current ramp phase of the discharge scans q_{min}

- Two deuterium co-tangential beams throughout except for brief periods
- Reproducible qmin evolution

Multiple fluctuation diagnostics detect the BAEs

BAEs & LFMs occur near rational values of qmin

- BAE frequencies near BAE accumulation frequency
- LFM frequency near zero (in plasma frame)
- BES data
 confirm poloidal
 mode numbers
 m for LFMs
- Magnetics data confirm toroidal mode numbers n for BAEs

*RSAE = Reversed shear Alfven eigenmode

The eigenfunctions peak near qmin

- The eigenfunction often peaks closer to the magnetic axis than the RSAEs and LFMs (but not always)
- LFMs peak near RSAEs
- Mode amplitude $\delta T_e \approx 10 \text{ eV}$

Turning off beams stabilizes BAEs but not LFMs

Substitution of perpendicular beams for tangential beams stabilizes BAEs

- LFMs & RSAEs remain unstable
- Slowing-down time: ~100 ms
- The same thing happens for beam substitution earlier in the discharge

Beam-angle dependence of BAEs consistent with resonant condition

- 87 kHz n=2 mode resonates* with few \perp beam ions
- 12 out of 13 unstable BAEs in the reference shot look similar

*Resonance when: 1) $\omega = n\omega_{\phi} - p\omega_{\theta}$ 2) Orbit traverses eigenfunction

LFMs are observed in archival discharges with little or no beam power

An LFM "Christmas light" pattern is observed in shots without beams

- Beam blips have no visible impact on modes
- Also occurs in shots without beam blips

Unstable LFMs occur at high T_e but low β ; BAEs favor high β

- Large database of over 1000 discharges
- Restricted to deuterium beam heated discharges w/ evolving qmin

Plasmas with substantial hydrogen concentrations are equally unstable

Plasmas with substantial hydrogen concentrations are equally unstable

Analytical theory* predicts a reactive LFM mode with properties consistent with observations

- Reactive instability (frequency near zero in plasma frame)
- Weak coupling to fast ions (modes observed without beams)
- Dominant thermal electron drive when $T_e \gg T_i$ (instability at large T_e but low beta)
- Mode in weak shear region near qmin (as observed)

Simulation

- GTC, FAR3d, LIGKA find unstable modes similar to BAE
- GTC & FAR3d find unstable modes similar to LFM
- Future work: realistic distribution function to reproduce observed stability threshold
- Future work: Apply validated code to ITER cases

*Section 6 of Nucl. Fusion 61 (2021) 016029