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Accurate disruption prediction on the DIII-D
tokamak using deep learning with raw, multi-scale

diagnostic data
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Using modern deep neural network architectures, accurate disruption predictions on the DIII-D tokamak are
made possible with the raw data from a single, high temporal resolution diagnostic which containsmulti-scale,
multi-physics sequences of events. This work illuminates a path forward to meet the disruption prediction re-
quirements of devices such as ITER by using raw diagnostic data containing rich physics information without
having to hand-craft features from these complex datasets generated by multiple tokamak diagnostics.

Excellent time-slice disruption prediction performance of 94% accuracy, and an F1-score of 91% (a metric
indicating low false positives and false negatives rates) [Churchill2019] is achieved using a neural network
architecture for multi-scale time-series, the Temporal Convolutional Network (TCN) [Bai2018] (see Fig. 1).
This builds on other work using machine learning for disruption prediction [Kates-Harbeck2019, Rea2018,
Ferreira2018], but in our case we show accurate performance training exclusively on a diagnostic previously
unused due to its high sampling rate: the Electron Cyclotron Emission imaging (ECEi) diagnostic [Tobias2010]
(see Fig. 2). The TCN is trained on a cluster of 16 GPUs over 2 days, on a subset of the available data, suggesting
the need to incorporate High Performance Computing (HPC) resources to achieve the most accurate results.

Figure 1: Learning results from the TCN network training with the entire ECEi dataset 1000 times
(epochs). As the TCN looks more and more at the data, the disruption predictions continually improve,
showing the network is learning.

These neural network disruption predictions were designed to be sensitive to pre-disruption markers up to
600ms before a disruption, giving sufficient time on DIII-D to avoid, not just mitigate, the disruption. This
can then be tremendously beneficial as an accurate predictor for use in control systems to actively modify
plasma actuators for avoiding disruptions. The TCN architecture can be adjusted and expanded depending on
the required time sequence sensitivity, to adapt to newer machines, or different ranges of timescales.

The ECEi diagnostic is particularly well suited for disruption predictions due to its sensitivity to multiple
time- and spatial-scales. There are a number of different root causes for disruptions, including edge radiation,
too high density, and MHD instabilities [Boozer2012]. ECEi systems acquire data at such a high sampling
rate (1 MHz) and spatial resolution (kθ up to 2.1 cm-1) under ideal conditions that well-behaved signals span
spatiotemporal scales to reflect the dynamics of turbulent fluctuations, Alfvén eigenmodes, tearing modes,
sawteeth, ELMs, and other potential pre-disruption markers. Non-ideal conditions also impact the signal in
ways that can be difficult for a human diagnostician to interpret, but are rich in information. For example,
a sudden loss of signal can be the result of density cutoff. Alternatively, a sudden spike in signal can be
the result of a non-thermal electron distribution. A wide range of other conditions can impact the signal,
producing fluctuations or other features that machine learning techniques might become sensitive to, even
when the human data analyst finds them to be troublesome or ambiguous. By using raw, un-processed ECEi
data, we make full use of all these signal features.



Figure 2: ECEi data from all channels (represented by different colors) near a disruption. Modes can be
readily seen starting near 4000ms, along with non-obvious features such as varying spikes and signal
drops near the disruption.

These deep learning techniques show promise to greatly enhance the current machine learning worldwide
effort being done on disruption predictions, one of the most pressing issues for the success of the tokamak
concept. They open up the possibility of expanding the number and types of diagnostics used in disruption
predictions, accurately including many different physics processes in these predictions. In the future, the
correlations between channels and diagnostics that these networks learn on one machine can potentially
be transferred and fine-tuned for a newer machine, requiring much less data from the newer machine then
needed to originally train the models.
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