
May 10, 2021 R. Michael Churchill, 28th IAEA FEC

Accurate disruption prediction on the 
DIII-D tokamak using deep learning with 
raw, multi-scale diagnostic data

R. Michael Churchill (PPPL)

Fusion 
researcher

AI/ML

B. Tobias (LANL), Y. Zhu (U.C. Davis), 
J. Choi (ORNL), R. Kube (PPPL)



May 10, 2021 R. Michael Churchill, 28th IAEA FEC

Disruption prediction is made difficult due to multi-
physics, multi-scale nature

• Many pathways can lead to 
a disruption occurring 

• Data-driven prediction has 
focused on ~10 physics 
quantities

• Plethora of diagnostics on 
tokamak devices can be 
incorporated using deep 
learning to enhance 
disruption prediction 
capabilities 
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De Vries, P. C., et. al. (2011). Survey of disruption causes at 
JET. Nuclear Fusion, 51(5), 053018.
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DIII-D Electron Cyclotron Emission Imaging (ECEi)

• Due to measurement of electron temperature, ECEi, 
is sensitive to a number of plasma phenomena 
important for disruptions, e.g.
• Sawteeth
• Tearing modes
• ELM’s
• Impurity radiation (through drop in Te)

• Due to measurement being more local, can pick up 
on finer details of e.g. locked mode dynamics, 
poloidal mode numbers

• While combining multiple diagnostics for disruption 
predictions is desired, ECEi by itself has potential to 
capture pre-disruption events, on fast time scales

• ECEi characteristics:
• Time resolution (1 MHz) 
• 20 x 8 channels for spatial resolution https://sites.google.com/view/mmwave/research/advanced-mmw-imaging/ecei-on-diii-d

[B. Tobias et al., RSI (2010)]
[Y. Zhu, HTPD2020]
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https://sites.google.com/view/mmwave/research/advanced-mmw-imaging/ecei-on-diii-d
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Temporal Convolutional Networks 

• Temporal Convolutional Network (TCN) architecture [*] combines causal, 
dilated convolutions with additional modern NN improvements (residual 
connections, weight normalization. etc.) 

• Several beneficial aspects compared to RNN’s:
• Empirically TCN’s exhibit longer memory (i.e. better for long sequences)
• Non-sequential, allows parallelized training and inference
• Require less GPU memory for training

[* Bai, J.Z. Kolter, V. Koltun, http://arxiv.org/abs/1803.01271(2018)]
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Using more data improves disruption prediction

• Balancing datasets (disruptive 
sequences ~5% of dataset), utilizing 
as much non-disruptive data as 
possible gives best performance
• Undersample (1x, ~60 GB)  F1~0.22

Churchill, R. M., et. al.(2020). PoP, 
27(6), 062510.

• Oversample (16x, ~1 TB):    F1~0.42

• Trained using 768 GPUs on Summit
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Training Loss
(↓ better)

Validation F1-score
(↑ better)

Epochs Epochs

Undersample (1x)

Oversample (16x)

Loss: measure of the “error”
F1-score: measure of correctly classified time-points

1 Epoch = 1 pass through ALL data



May 10, 2021 R. Michael Churchill, 28th IAEA FEC

Feature Normalization prevents numerical 
instabilities in training
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https://arxiv.org/abs/1803.08494 https://myrtle.ai/learn/how-to-train-your-resnet-7-batch-norm/

Training Loss
(↓ better)

Validation F1-score
(↑ better)

TCN default
(weight_norm)

TCN with Instance Norm

Epochs Epochs

ECEi tensor
[Nbatch,Nchannel,Ntimes]

𝑥1 𝑥2 𝑥3

Layer 1 tensor
[Nbatch,Nconvs,Ntimes]

Layer 2 tensor
[Nbatch,Nconvs,Ntimes]

Feature normalization normalizes the 
input to EACH layer across some 

dimension(s)

Serves to “damp out” numerical 
instabilities in NN training
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Neural network structure and optimizer give marginal 
improvements, but less sensitivity to hyperparameters

• Two “calibration” pieces gave marginal 
improvement, but much easier training 
(less time in tuning hyperparameters)
• Placing feature normalization before 

convolutions removed need to clip 
gradients (avoid numerical instabilities)

• Using AdamW optimizer much less sensitive 
to learning rate (orders of magnitude 
range), presumably better for sequence 
models
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He, et. al. (2016) https://arxiv.org/pdf/1603.05027.pdf

Training Loss Validation F1-score

Epochs Epochs

Combined effect of more data(oversampling), instance 
normalization, and AdamW optimizer (+ others) lead to 

increase from F1~0.22 to F1~0.88 on time slice prediction

https://arxiv.org/pdf/1603.05027.pdf
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Disruption prediction performance with ECEi data 
on DIII-D

• Shot performance using only ECEi data 
gives good disruption prediction 
(TPR~86% and FPR~7.5%), but not at level 
desired (TPR>95% and FPR<5%)

• Further improvements may come from:
• Further improvements to NN architecture 

and/or training
• incorporating additional diagnostics and 

physics
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ITER min. warning 
time (30 ms)

Warning Times
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Summary

• A deep convolutional neural network with dilated convolutions (TCN) 
allows learning on multi-scale plasma diagnostics such as ECEi, for 
predicting complicated multi-physics phenomena  such as tokamak 
disruptions

• Multiple improvements to existing TCN design such as Feature 
Normalization and oversampling minority classes give large performance 
gains

• The area of deep learning applied to plasma diagnostics has numerous 
potential applications for aiding fusion scientists

9
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Backup
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Dilated convolutions enable efficient training on 
long sequences

• Typical sequence neural networks such as Recurrent 
architectures (RNN, LSTM) have difficulties 
“remembering” long sequences of events [Bai 2018]
• LSTM Rule of thumb sequence length <1000, so 
• For disruptions with ECEi, 

• CNNs with causal filters require large filters or many 
layers to learn from long sequences 
• Due to memory constraints, this becomes infeasible

• Dilated convolutions (i.e. convolution w/ defined gaps) 
increase the NN receptive field with same parameter 
size, allows training on high-time resolution diagnostic 
time series

Normal convolution 

Dilated convolution 

[* A. Van Den Oord, et. al., WaveNET: A Generative Model for Raw Audio, 2016]

300 ms
(100 kHz)-1 ~30,000

Output
Layer 3
Layer 2
Layer 1
Input

Output
Layer 3
Layer 2
Layer 1
Input
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Dataset and computation

• Database of ~3000 shots (~50/50 non-
disruptive/disruptive) with good ECEi data 
created from the Omfit DISRUPTIONS 
module shot list [E. Kolemen, et. al.]
• “Good” data defined as all channels have 

SNR>3, avoid discharges where 2nd harmonic 
ECE cutoff
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ECEi data near disruption

• ECEi data (~10 TB) transferred to various HPC 
centers for distributed training
• Princeton U. TigerGPU (320 nVidia P100 GPUs)
• PPPL/Princeton U. Traverse (186 nVidia V100 GPUs)
• ORNL Summit (27,468 nVidia V100 GPUs)
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Target setup for training neural network

• Target is to predict whether a time point is disruptive or not 
(binary classification)

• Time slices labelled “disruptive” 300 ms before disruption
• Times before 350ms have similar distribution to non-disruptive discharges 

[Rea FST 2018]
• Key assumption is that 300 ms before a disruption is a minimum amount of 

time by which events relating to disruptions will appear
• When making shot predictions with NN timeslice predictions, will relax

• Each timeslice prediction uses previous 300ms
• Overlapping subsequences of length >> receptive field are 

created, length mainly set by GPU memory constraints

Figure: Rea, FST, 2018

Near 
disruption

Far from 
disruption

Non-
disrupted
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Data and network setup for training neural network

• Plan to start with smaller subsets of data
• Downsample in time to 100 kHz
• Undersample non-disruptive examples to balance 

dataset (natural class imbalance ~5% disruptive 
sequences)

• Neural network (TCN) setup:
• Receptive field ~30,000 i.e. 300ms (each time slice 

prediction based on receptive field)
• 4 layers, dilation 10, kernel size 15, hidden nodes 400 

per layer
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Deep learning enables working with complex, high-
dimensional data
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Hysteresis threshold method for shot predictions

• Performance on each time step is important, but 
predictions for each shot more common and 
useful to determine performance

• Since predictions done at each time step at 100 
kHz, can have noisy prediction spikes

• We want mitigation to trigger when NN 
disruption predictor stays on long enough
• Use hysteresis threshold method [Montes 2019] to 

determine alarm thresholds
• Use Bayesian Optimization (optuna) to solve: 
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Churchill, R. M., et. al.(2020). PoP, 27(6), 062510.

Locked 
mode


