Accurate disruption prediction on the DIII-D tokamak using deep learning with raw, multi-scale diagnostic data

R. Michael Churchill (PPPL)

B. Tobias (*LANL*), Y. Zhu (*U.C. Davis*), J. Choi (*ORNL*), R. Kube (*PPPL*)

Disruption prediction is made difficult due to multiphysics, multi-scale nature

- Many pathways can lead to a disruption occurring
- Data-driven prediction has focused on ~10 physics quantities
- Plethora of diagnostics on tokamak devices can be incorporated using deep learning to enhance disruption prediction capabilities

De Vries, P. C., et. al. (2011). Survey of disruption causes at JET. *Nuclear Fusion*, *51*(5), 053018.

R. Michael Churchill, 28th IAEA FEC

DIII-D Electron Cyclotron Emission Imaging (ECEi)

- Due to measurement of electron temperature, ECEi, is sensitive to a number of plasma phenomena important for disruptions, e.g.
 - Sawteeth
 - Tearing modes
 - ELM's
 - Impurity radiation (through drop in Te)
- Due to measurement being more local, can pick up on finer details of e.g. locked mode dynamics, poloidal mode numbers
- While combining multiple diagnostics for disruption predictions is desired, ECEi by itself has potential to capture pre-disruption events, on fast time scales
- ECEi characteristics:
 - Time resolution (1 MHz)
 - 20 x 8 channels for spatial resolution

https://sites.google.com/view/mmwave/research/advanced-mmw-imaging/ecei-on-diii-d

Temporal Convolutional Networks

- Temporal Convolutional Network (TCN) architecture [*] combines causal, dilated convolutions with additional modern NN improvements (residual connections, weight normalization. etc.)
- Several beneficial aspects compared to RNN's:
 - Empirically TCN's exhibit longer memory (i.e. better for long sequences)
 - Non-sequential, allows parallelized training and inference
 - Require less GPU memory for training

Using more data improves disruption prediction

- Balancing datasets (disruptive sequences ~5% of dataset), utilizing as much non-disruptive data as possible gives best performance
 - Undersample (1x, ~60 GB) F1~0.22 Churchill, R. M., et. al.(2020). *PoP*, *27*(6), 062510.
 - Oversample (16x, ~1 TB): F1~0.42
- Trained using 768 GPUs on Summit 10⁻¹

TP

R. Michael Churchill, 28th IAEA FEC

Precision T Recall

Feature Normalization prevents numerical instabilities in training

Neural network structure and optimizer give marginal improvements, but less sensitivity to hyperparameters

 Two "calibration" pieces gave marginal improvement, but much easier training (less time in tuning hyperparameters)

- Placing feature normalization before convolutions removed need to clip gradients (avoid numerical instabilities)
- Using AdamW optimizer much less sensitiv₁₀₋₄ to learning rate (orders of magnitude range), presumably better for sequence models

Combined effect of more data(oversampling), instance normalization, and AdamW optimizer (+ others) lead to increase from F1~0.22 to F1~0.88 on time slice prediction

He, et. al. (2016) https://arxiv.org/pdf/1603.05027.pdf

Disruption prediction performance with ECEi data on DIII-D

ŀ

- Further improvements may come from:
 - Further improvements to NN architecture and/or training
 - incorporating additional diagnostics and physics

CONFUSION MATRIX FOR SHOT PREDICTIONS ON HOLDOUT TEST SET

		Predicted	
		Disruptive	Non-disruptive
Actual	Disruptive	TP=111	FN=18
	Non-disruptive	FP=12	TN=147
el			

Warning Times

Summary

- A deep convolutional neural network with dilated convolutions (TCN) allows learning on multi-scale plasma diagnostics such as ECEi, for predicting complicated multi-physics phenomena such as tokamak disruptions
- Multiple improvements to existing TCN design such as Feature Normalization and oversampling minority classes give large performance gains
- The area of deep learning applied to plasma diagnostics has numerous potential applications for aiding fusion scientists

References

- Al quote: <u>https://www.forbes.com/sites/peterhigh/2017/10/30/carnegie-mellon-dean-of-computer-science-on-the-future-of-ai/#3a6ad4f82197</u>
- Gradient Descent, How Networks Learn <u>https://www.youtube.com/watch?v=IHZwWFHWa</u>
- HIT-II: A. J. Redd, B. A. Nelson, T. R. Jarboe, P. Gu, R. Raman, R. J. Smith, and K. J. McCollam, Physics of Plasmas 9, 2006 (2002)
- JET Shattered Pellet <u>https://euro-fusion.org/news/2019/october/shattering-plasma-disruptions/</u>
- Wendelstein 7-X <u>https://www.youtube.com/watch?v=u-fbBRAxJNk</u>
- Autodesk generative design <u>https://www.youtube.com/watch?v=CtYRfMzmWFU</u>
- GAN http://www.lherranz.org/2018/08/07/imagetranslation/
- Quotes from Alan Turing, Jeff Dean https://www.import.io/post/history-of-deep-learning/

References Cont.

- Meena, Google chatbot <u>https://ai.googleblog.com/2020/01/towards-conversational-agent-that-can.html</u>
- Random forest for disruption prediction: C. Rea, R.S. Granetz, K. Montes, R.A. Tinguely, N. Eidietis, J.M. Hanson, B. Sammuli, Plasma Phys. Control. Fusion 60 (2018) 084004.
- SVM for disruption prediction: G.A. Rattá, J. Vega, A. Murari, S. Dormido-Canto, R. Moreno, Fusion Eng. Des. 112 (2016) 1014–1018.
- ML for control: Kolemen, Fu, Boyer, Erickson, to be published
- ML for simulation in control: Boyer
- ML for TGLF: O. Meneghini, et. al., Nucl. Fusion 57 (2017) 086034.
- https://myrtle.ai/learn/how-to-train-your-resnet-7-batch-norm/
- Mehta, V., et. al. (2020). http://arxiv.org/abs/2006.12682
- Churchill, R. M., et. al. (2020). PoP, 27(6), 062510. https://doi.org/10.1063/1.5144458

References Cont.

• https://twitter.com/MichaelAuli/status/1320755019432427520

Dilated convolutions enable efficient training on long sequences

- Typical sequence neural networks such as Recurrent architectures (RNN, LSTM) have difficulties "remembering" long sequences of events [Bai 2018]
 - LSTM Rule of thumb sequence length <1000, so $\frac{T_{long}}{T_{chart}} \lesssim 1000$
 - For disruptions with ECEi, $\frac{300 \text{ ms}}{(100 \text{ kHz})^{-1}} \sim 30,000$
- CNNs with causal filters require large filters or many layers to learn from long sequences
 - Due to memory constraints, this becomes infeasible
- Dilated convolutions (i.e. convolution w/ defined gaps) increase the NN receptive field with same parameter size, allows training on high-time resolution diagnostic time series

Normal convolution

Dilated convolution

14

[* A. Van Den Oord, et. al., WaveNET: A Generative Model for Raw Audio, 2016]

Dataset and computation

- Database of ~3000 shots (~50/50 nondisruptive/disruptive) with good ECEi data created from the Omfit DISRUPTIONS module shot list [E. Kolemen, et. al.]
 - "Good" data defined as all channels have SNR>3, avoid discharges where 2nd harmonic ECE cutoff
- ECEi data (~10 TB) transferred to various HPC centers for distributed training
 - Princeton U. TigerGPU (320 nVidia P100 GPUs)
 - PPPL/Princeton U. Traverse (186 nVidia V100 GPUs)
 - ORNL Summit (27,468 nVidia V100 GPUs)

Target setup for training neural network

- Target is to predict whether a time point is disruptive or not (binary classification)
- Time slices labelled "disruptive" 300 ms before disruption
 - Times before 350ms have similar distribution to non-disruptive discharges [Rea *FST* 2018]
 - Key assumption is that 300 ms before a disruption is a *minimum* amount of time by which events relating to disruptions will appear
 - When making shot predictions with NN timeslice predictions, will relax
- Each timeslice prediction uses previous 300ms
- Overlapping subsequences of length >> receptive field are created, length mainly set by GPU memory constraints

Data and network setup for training neural network

- Plan to start with smaller subsets of data
 - Downsample in time to 100 kHz •
 - Undersample non-disruptive examples to balance dataset (natural class imbalance ~5% disruptive sequences)
- Neural network (TCN) setup:
 - Receptive field ~30,000 i.e. 300ms (each time slice prediction based on receptive field)
 - 4 layers, dilation 10, kernel size 15, hidden nodes 400 ٠ per layer

Deep learning enables working with complex, highdimensional data

Hysteresis threshold method for shot predictions

- Performance on each time step is important, but predictions for each shot more common and useful to determine performance
- Since predictions done at each time step at 100 kHz, can have noisy prediction spikes
- We want mitigation to trigger when NN disruption predictor stays on long enough
 - Use hysteresis threshold method [Montes 2019] to determine alarm thresholds
 - Use Bayesian Optimization (optuna) to solve:

$$\mathbf{\theta}_* = \operatorname{argmin}_{\mathbf{\theta}} \sqrt{[TPR(\mathbf{y}; \mathbf{\theta}) - 1]^2 + [FPR(\mathbf{y}; \mathbf{\theta}) - 0]^2}$$

$$\mathbf{\theta}_* = (\sigma_{low}, \sigma_{high}, \tau_{alarm})$$

