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Disruption prediction is made difficult due to multi-
physics, multi-scale nature
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DIII-D Electron Cyclotron Emission Imaging (ECEi)

Due to measurement of electron temperature, ECEi|,
is sensitive to a number of plasma phenomena
important for disruptions, e.g.

Sawteeth

Tearing modes

ELM’s

Impurity radiation (through drop in Te) Ok :
Due to measurement being more local, can pick up S wimaminsii
on finer details of e.g. locked mode dynamics,
poloidal mode numbers
While combining multiple diagnostics for disruption -
predictions is desired, ECEi by itself has potential to "
capture pre-disruption events, on fast time scales

ECEi characteristics:
Time resolution (1 MHz)
20 x 8 channels for spatial resolution



https://sites.google.com/view/mmwave/research/advanced-mmw-imaging/ecei-on-diii-d

Temporal Convolutional Networks

Temporal Convolutional Network (TCN) architecture [*] combines causal,

dilated convolutions with additional modern NN improvements (residual
connections, weight normalization. etc.)

Several beneficial aspects compared to RNN’s:
Empirically TCN’s exhibit longer memory (i.e. better for long sequences)
Non-sequential, allows parallelized training and inference
Require less GPU memory for training
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http://arxiv.org/abs/1803.01271

Using more data improves disruption prediction

Balancing datasets (disruptive
~EO e Training Loss Validation F1-score
sequences ~5% of dataset), utilizing (| better) (1 better)

as much non-disruptive data as
possible gives best performance ‘

Undersample (1x, ¥60 GB) F1~0.22
Churchill, R. M., et. al.(2020). PoP,
27(6), 062510.

Oversample (16x, ~1 TB): F1~0.42
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Feature Normalization prevents numerical
instabilities in training
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Neural network structure and optimizer give marginal
improvements, but less sensitivity to hyperparameters

Training Loss

Validation F1-score

*  Two “calibration” pieces gave marginal
improvement, but much easier training

107

(less time in tuning hyperparameters)
- ' Placing feature normalization before 102
4 i convolutions removed need to clip

v ¥ gradients (avoid numerical instabilities)  *~;

*  Using AdamW optimizer much less sensitiv__, ]
to learning rate (orders of magnitude
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Combined effect of more dataloversampling), instance
normalization, and AdamiW optimizer (+ obhers) lead to
increase from F170.22 ko F170. 5% on time slice prediction

6 May 10, 2021
J

He, et. al. (2016) hitps://arxiv.org/pdf/1603.05027 pdf
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https://arxiv.org/pdf/1603.05027.pdf

Disruption prediction performance with ECEi data
on DIII-D

CONFUSION MATRIX FOR SHOT PREDICTIONS ON HOLDOUT TEST SET
F
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Summary

A deep convolutional neural network with dilated convolutions (TCN)
allows learning on multi-scale plasma diagnostics such as ECEi, for
predicting complicated multi-physics phenomena such as tokamak
disruptions

Multiple improvements to existing TCN design such as Feature
Normalization and oversampling minority classes give large performance
gains

The area of deep learning applied to plasma diagnostics has numerous
potential applications for aiding fusion scientists
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Dilated convolutions enable efficient training on

long sequences

Typical sequence neural networks such as Recurrent
architectures (RNN, LSTM) have difficulties
“remembering” long sequences of events [Bai 2018]

TOTL
LSTM Rule of thumb sequence length <1000, so A < 1000

For disruptions with ECEi, 300 ms

Dilated convolutions (i.e. convolution w/ defined gaps)
increase the NN receptive field with same parameter
size, allows training on high-time resolution diagnostic

time series

(100 kHz)"
CNNs with causal filters require large filters or many
layers to learn from long sequences

Due to memory constraints, this becomes infeasible

Normal convolution
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[* A. Van Den Oord, et. al., WaveNET: A Generative Model for Raw Audio, 2016]



Dataset and computation

ECEi data near disruption

Database of ~3000 shots (~50/50 non-
disruptive/disruptive) with good ECEi datc
created from the Omfit DISRUPTIONS

module shot list [E. Kolemen, et. al.]
“Good” data defined as all channels have

Volts

disruption

SNR>3, avoid discharges where 2nd harmonic
ECE cutoff

ECEi data (~10 TB) transferred to various HPC
centers for distributed training
Princeton U. TigerGPU (320 nVidia P100 GPUs)
PPPL/Princeton U. Traverse (186 nVidia V100 GPUs)
ORNL Summit (27,468 nVidia V100 GPUs)

S,
( L

disruption




Target setup for training neural network

. . ) .. . . Figure: Rea, FST, 2018
Target is to predict whether a time point is disruptive or not oot

(binary classification) g Sisveion

6.0

Time slices labelled “disruptive” 300 ms before disruption

4.5

Times before 350ms have similar distribution to non-disruptive discharges
[Rea FST 2018]

Key assumption is that 300 ms before a disruption is a minimum amount of 15
time by which events relating to disruptions will appear

ted
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Data and network setup for training neural network

Plan to start with smaller subsets of data

Downsample in time to 100 kHz

Undersample non-disruptive examples to balance
dataset (natural class imbalance ~5% disruptive

sequences)

Neural network (TCN) setup:
Receptive field ~30,000 i.e. 300ms (each time slice
prediction based on receptive field)
4 layers, dilation 10, kernel size 15, hidden nodes 400

per layer

Disruptive

N

Undersampling majority dlass

.

NN
. N—
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Original dataset Final dataset
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Deep learning enables working with complex, high-
dimensional data

li = fu(...(f3(f2(f1(M))))...)
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Hysteresis threshold method for shot predictions

Performance on each time step is important, but N |
predictions for each shot more common and 0//// e |.

useful to determine performance z.s-//_i/l”/.l,\,\“/_,ﬁ_\"'L
—— ECE core [V]

Since predictions done at each time step at 100 50
kHz, can have noisy prediction spikes

—— n=1rms [G]

—— .__———.

- . . 4(5)2 Locked
We want mitigation to trigger when NN 30-'\/‘&%%/ n—lifreg H /mode
. . . 151
disruption predictor stays on long enough 0
. = TCN disruption prediction
Use hysteresis threshold method [Montes 2019] to dailiiais
determine alarm thresholds 0.5
Use Bavesian Optimization (optuna) to solve: 0.0
0.0 0.5 .0 2.5
0. — argming\/ [TPR(y; 0) — 1]° + [FPR(y; 6) — 0] “Time

Churchill, R. M., et. al.(2020). PoP, 27(6), 062510.
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