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• Motivation: a rotating 2/1 tearing 

mode can robustly grow, lock to the 
resistive wall, the H-mode is lost, 
disruption follows

• This new work: gives experimental 
and theoretical insights, as well as 
novel benchmarked toroidal-theory-
based modeling, to a longstanding 
uncertainty in projecting how NTMs 
are seeded, for scaling to ITER



2103-129002103-12900/2

• MOTIVATION: [growing NTM slows down, locks to the wall, 
H-mode is lost, disruption follows:  NTMs are a (the) major cause 
of disruptions]

• DIII-D ITER baseline scenario (IBS) discharges compared to those 
predicted for ITER (q95~3, bN~1.8) 

• Case studies of an ELM and a sawtooth (ST) that produce 
robustly growing m/n=2/1 NTMs in the DIII-D IBS

• Physics of NTM stability: Modified Rutherford Equation (MRE) 
with a coupled rotation relation for the NTM “gate”: also NIMROD

• Extrapolating to ITER from the DIII-D IBS 
• How ELM control could, and ST control can, reduce the magnetic 

perturbations that seed/excite robustly growing NTMs

• Conclusions and future work

OUTLINE:
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• NTMs that grow and lock are the largest cause of tokamak 
disruptions (except for human error)

[P.C. DeVries et. al.,”Survey of disruption causes in JET," Nucl. Fusion 51, 053018 (2010)]

• Island width w(t) found by integrating MRE benchmarked to DIII-D 
IBS discharges and with fm(t) from integrating an equation for 
rotation with w(t) input
– Initial ITER q = 2 plasma rotation taken here as 420 Hz (A.R. Polevoi, 

et.al., PPCF 2006)
[R.J. La Haye, C. Paz-Soldan and Y.Q. Liu, “Effect of thick blanket modules on neoclassical 
tearing mode locking in ITER,” Nuclear Fusion 57, 01004 (2017]

MOTIVATION: Modeling from DIII-D Predicts How Growing 
m/n=2/1 NTM Islands Will Slow Down and Lock in ITER
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• D’r0=-0.1 is near marginal classical stability in DIII-D (Thanks to Zhiuri
Wang (PPPL) for resistive DCON on kinetic EFIT by Bob Wilcox)
– assume same for ITER
– D’=-0.002cm-1 DIII-D, -0.0005cm-1 ITER (negligible effects in both)

• ITER is 3.7X DIII-D IBS in size, 2.65X in field, similar in shape, aspect 
ratio and ion banana width, lower resistive diffusivity and rotation 
frequency but higher Lundquist number S= tR /tA at q=2

DIII-D IBS & ITER have Similar Current Density j and 
Safety Factor q profiles (& Classical Stability?)
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• Critical dB set by induced helical polarization currents Jpol that 
arise from finite island rotation in the plasma ExB rotation frame;
(not considered here is the transport threshold effect wd)

– helical polarization current from ion inertia and quasi-neutrality
sets a critical island width that is sign & rotation dependent

which is a product of the order of 
the ion banana width and a
function F(w) of the rotation
(shown on the right)
with w=wisland-wExB

– stabilizing for wi* > w > 0

NTMs are Classically Stable, Non-linearly Unstable and to Grow 
Robustly Must be Seeded by a Critical dB From Another MHD Event
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Each ELM lowers n=1 mode frequency fm towards fE, transiently opening 
the otherwise stabilizing gate and eventually the gate stays open (fm ~ fE) at 
larger mode amplitude (F~1 goes to F~0)

– Fourier Analysis over running 4 msec interval every 2 msec for fm , Brms

– CER every 1 msec for both toroidal and poloidal rotations for fE

nth ELM at 3396 msec in DIII-D Seeds Robustly Growing 2/1 NTM That 
Has Previously  Been “Stalled” After n-2th, n-1th ELMs at 3335, 3363

ELMs every ~ 30 msec

fE=Er/6.28RBpol @ q=2
dips less at ELMs than fm

Stalled growth at low Brms

2/1 grows robustly from
3396 after fm~ fE and 
Brms > 3 G (w0 > 5 cm)



2103-129002103-12900/7

Before crash stabilizing gate is closed (ft>fm>fE), after fm goes to fE

& gate is opened for mode to grow (F~1 goes to F~0)
– as in 174446, Fourier Analysis over running 4 msec interval every

2 msec
– as in 174446, CER

every 1 msec

nth Sawteeth Crash at 2792 msec in DIII-D Seeds Robustly Growing 2/1 
NTM That Has Been Previously  “Driven” by 1/1 ST Precursor From 2788 

1/1 & 2/1 by Fourier
frequency bands to
isolate modes

1/1 ST precursor
starts growing ~2750,
crashes at 2792 msec

2/1 identified and 
grows robustly from 
2788 msec; crash
at 2792 msec
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MHD Events That Seed Robustly Growing 2/1 NTMs Have Durations Much 
Shorter Than Visco-Resistive Tearing Time tR

5/6 tA
1/3 tV

-1/6 ~36 msec @q=2

ELM “kink” 
turns stalled 
2/1 mode
into lower 
frequency 
larger 
amplitude 
robustly 
growing 
NTM

Sawteeth 
precursor 
and crash 
turns driven 
2/1 mode 
into lower 
frequency 
robustly 
growing
NTM

ELM duration ~0.4 msec Sawteeth crash also ~0.4 msec
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The Modified Rutherford Equation (MRE) has the Physics Elements to 
Describe the NTM Stability as Functions of Both Island Size and Rotation

NTM Modified Rutherford Equation (MRE) Is Nonlinear

• Lowest order usual MRE incorporating low A toroidal e↵ects is
dw
dt

= D⌘
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• Parameters at q=2/1 in DIII-D discharge 174446 at 3390 ms are:
D⌘ ' 1020 cm2/s, e↵ective magnetic field di↵usivity ⌘ h|~r⇢|2i⌘nc

k /µ0,

�0 ' � 0.002 cm�1, classical tearing mode stability parameter (stable, small),

dNTM ' 3.1 jboot/hjki ' 0.49, dimensionless and destabilizing NTM drive,

wpol ' 2.7 cm ' 2.1⇥ ion banana width for polarization current Jpol, stabilizing,

F (fm)  1.0, “gate function” for Jpol e↵ects, depends on 2/1 mode-freq. fm.

• To compare with DIII-D data write MRE in terms of the root-
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• Numbers are at 3390 ms in 174446; neglect small w�0 ⇠ � 0.01.
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Growth Rate of Brms Depends in Part on the Gate Function F(fm) 
which in turn Depends on the Island Rotation fm with Respect to fE

DIII-D Discharge 174446MRE Is Analyzed For Brms, fm
• Keeping dominant terms, lowest order MRE neglecting �0, · · · is
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• The “gate function”F (fm)  1.0 for ion polarization Jpol e↵ects is
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• If no MHD transients, the theoreticalth equilibrium flux-surface-
average (FSA) toroidal n=�1 mode frequency h(R2/R2

0)
~Vi ·~r⇣i is

f
th

m = fE � f⇤i + fpol ' ftor (RCER/R0), i.e., ' CER-measured toroidal flow.

• dfm/dt equation with 2/1MHD transients (for �t>⇠ ⌧MHD'0.4ms) is
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.
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• NIMROD code simulates NTMs seeded by an externally imposed
1 ms MHD magnetic pulse (stable without pulse)

– Realistic equilibrium: DIII-D with Lundquist number (q=2) S=2.5E6
[E. Howell et al., “NIMROD Modeling of Transient-Induced NTM," APS-DPP meeting 2020]

NIMROD  Modeling of ELM Induced NTM DIII-D Discharge 174446 Yields  
Similar Features as MRE, i.e. Linearly Stable, Non-linearly Unstable

Evolution of helically resonant
magnetic fluxes including 1 ms pulse

Poincare plot at 15 ms exhibits
2/1 island width of ~10 cm
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• Solving !"!/!$ = & of Slide 10, absent the transient torque from an MHD 
perturbation, the island rotations both fall within the stabilizing frequency 
band with gate function F~(, i.e. closed, at critical island width )" for 
onset

• Predicted island growth rate (for gate nearly open or for closed) in ITER 
is slower than DIII-D due to its much smaller magnetic field diffusivity but 
shifted to smaller )" and very much smaller (0.17X) relative size )"/*"

DIII-D and ITER are in similar regimes for island rotation #$
wrt plasma toroidal #% and  #& = ()/2,-./01 rotations at q=2 
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• ELM control by Resonant Magnetic Perturbations (RMP) in the low torque 
low q95 DIII-D IBS awaits full success; instead we contrast a major ELM 
and an in-between minor ELM for the size of the n=1 magnetic 
perturbations (neither of these excites the NTM)

– Two-point scaling of peak odd n (here 3 pairs) is !B~1.4(! ⁄#! #!) ⁄# $

and all else being equal, %%&&'~ !' ⁄# $~ ⁄!#! #! ⁄# ( so a factor of two 
smaller seed island requires a factor of 1/16 in ! ⁄#! #!

ELM Control in ITER Could Reduce the Seeding Magnetic Perturbations so as 
to be Below the Critical Level for Robust Growth?
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• Co-ECCD inside q=1 can destabilize sawteeth making them occur 
more frequently [I.T. Chapman, et al., “Sawtooth control using electron cyclotron 
current drive in ITER demonstration plasmas in DIII-D,” Nucl. Fusion 52 (2012) 063006]
– As shown below ⁄"#$$% "&'& ~). + ,& -~). + in DIII-D halves the ST period T as 

well as the peak n=1 magnetic perturbation at the crash
– Scaling of peak odd n is ./~0 and 12##%~(./) ⁄5 +~0 ⁄5 + all else being 

equal; factor of 4 reduction in T needed for seed island width a factor of 2

Sawteeth Control by ECCD inside q=1 in ITER Could Reduce Magnetic 
Seeding Perturbations so as to Be Below the Critical Level?
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• MHD transients in ITER are much more likely than in DIII-D to
destabilize the most problematic, robustly growing 2/1 NTMs that
ultimately lead to locked modes and disruptions
– ELMs and sawtooth (ST) crashes identified as causes

• How much and for how long will the transient torque !"##!$%&'
during an ELM or ST crash drive down the mode rotation in ITER?
– recovery (gate opens & closes) or not (gate stays open)

• Will ELM suppression by RMP and ST control by ECCD reduce the
transient magnetic perturbations enough so seeds are too small
for tearing mode excitation?
– DIII-D data suggests these techniques can be effective

• How to scale to ITER? Can NIMROD test?

Conclusions, Questions and Future Work: ITER is predicted to be more 
sensitive to seeding of disruptive NTMs than DIII-D by a factor of 1/6 in 
w0/r0 (F=1); dB~0.1 G which will make early detection problematic
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MHD Transients Open Jpol Gate To Growing 2/1 NTMs

ION POLARIZATION CURRENT GATE 

DISRUPTIVE 2/1 NTM ROBUST GROWTH

COMING EVENTS CAST THEIR SHADOW

Robustly Growing 2/1 NTMs Lead to Disruptions, Particularly at low q95;
MHD Transients Open Jpol Gate to Growing 2/1 NTMs
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