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Detailed outline

I. Intro and Motivations [slides 2-5]

a) Disruptions as final loss of control (3), interpretable algorithms to aid
INn active monitoring of soft and hard limits (4-5)

Il. Disruption Prediction via Random Forest (DPRF) [slides 6-18]
a) Previous results (6)
1. More details on RF methodology in backup slides (23-25)
o) DIII-D upgrades: DPRF2.0 (7-14)
1. Improved fraining set (7) and input features (8-9)
2. Off-normal detection closed-loop experiments (11-12)
3. Proximity control integration (13-14)
c) EAST implementation and closed-loop experiments (15-18)
lll. Summary And Conclusions [slides 19-20]
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Plasma pushed close to operational limits often leads to

instabilities onset or conirol faults: unintentional disruptions

Disruptions related 1o peak plasma performances: higher stored energy,

longer confinement times...

« Consequences: melting/ablation of plasma facing components,
thermal loads, mechanical stresses,...
Real-time prediction and avoidance, with mitigation, mandatory when

scaling to reactor sizes and forces.

View from visible camera of disruption on
Alcator C-Mod. Courtesy R.A. Tinguely.

L e

JET runaway damage.
https://www.iter.org/newsline/-/2234
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Statistical studies show complex chains of events:

need fimely identification of unstable events

« Statistics of the sequence of
events for ~10yrs of unintentional
disruptions at JET: width of the
connecting arrows indicates the
frequency of event occurrence;
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« Similar studies are not always
available across different
tokamaks.
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Disruptions as final loss of contirol:
B

De Vries et al. NF 51 (2011) 053018 “Survey of disruption causes at JET”
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Active monitoring and prediction of soft/hard limits

necessary to inform fransition across ops boundaries
C::mfr'lnu:::us Asyncf:mnc-us [ DMS }

I n
E trigger
Controlled Stab. Limit E?
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Adapted from

Performance N
: Avoidance Mitigation
Sammuli et al, FED 2021 optimization

* Proximity to stability boundaries needs to be actively conirolled by the PCS,
managing different actuators for different tasks.
 Disruption Free Protocol* @DIII-D qualify solutions for different conirol regimes.

*J. Barr et al 2021, 28th

AEA FEC. EX/5.TH/6 Interpretable data-driven models

provide general proximity to

unstable ops space.
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Interpretable ML models for disruption prediction useful

resources to identify stability boundaries in real-time

* DIII-D and EAST: the Disruption Prediction via Random Forest algorithm
(DPRF) applied to compute the probability of an impending disruption,
while interpreting its drivers in real-time.
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DPRF supervised binary classification algorithm:

identify transitions from disruptive to disruptive phases

DPRF is based on the
£ S Random Forest*
S 2.5 :
= ensemble algorithm
_; 2.0} e — collectionof
L
m 1.0
L . o
gn 5 Provides metrics of
0.9 s s =0 interpretability.
normqlized in-l-ernql induc-l-qnce *L. Breimann, Machine Learning 45, 5-32 (2001)

Fixed time for transition from safe to disruptive operational space.
Training set: thousands of discharges, agnostic to disruption type.
Offline cross-machine investigation 0-D features (flattop data).

DIII-D Real-time imp|ementqﬁon in FY18-19 C. Rea and R.S. Granetz, Fus. Science Tech. 74 (2018
) C. Rea et al., Plasma Phys. Control. Fusion 60 (2018)

— DPRF 2.0 C. Rea et al., Nucl. Fusion 59 (2019)
: K. Montes, C. Rea et al., Nucl. Fusion 59 (2019)



Upgrades to DIlI-D DPRF through improved training set

and input features: DPRF 2.0

- Improved label classification by detecting transitions between specific
operational boundaries on a shot-by-shot basis. , .. .. N Fusion 59 2019

160 « Unstable events manually
140 Event type at transition time identified > 300 DIII-D
discharges (Montes).

* ML algorithms: training
composition can affect the
model sensitivity towards
certain scenarios.

MHD ML IMP HL UFO MAR AUX HD RC  other

* Need (automated)

Tags from De Vries et al. NF 51 (2011) 053018 Id.en'l'lfl‘Cd'l'IOI"l of
Dill-D “Survey of disruption causes at JET” disruption causes.
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DPRF 2.0: radial peaking factors added to other 0-D inputs

to detect earlier instability onset

- 1D/2D profile information compressed
INntfo peaking factors.

Emissivity [MWm ™3]

* Profile diagnostics mapped onto flux
surfaces or core / divertor regions.

4 —T, CVA P (_\A s 1
——n, CVA—P,, ;‘(DI\

Peaking factors are interpretable,
easy to calculate in real-time

A. Pau et al., IEEE TPS, 46 (2018)

C. Req, K.J. Montes, A. Pau, R.S. Granetz, O. Sauter,

“Progress Towards Interpretable Machine Learning-based
Disruption Predictors Across Tokamaks”, Fus. Science Tech. (2020)

Channel #
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Te and ne remapped onto p to exiract relative

importance of the core vs full profile + Prad peakings

DIlI-D Thomson Scattering System
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C. Reaq, K.J. Montes, A. Pau, R.S. Granetz, O. Sauter,

“Progress Towards Interpretable Machine Learning-based
Disruption Predictors Across Tokamaks”, Fus. Science Tech. (2020)
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DPRF 2.0: use feature contributions to identify disruptivity

drivers in real-time and inform PCS

DPRF 2.0
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DPRF 2.0 shows real-fime feature conitribution computation

(~ 200 ps) and successful ONFR* integration

C. Rea et al. IAEA FEC 2020 DIII-D 180805

N ERRLLEEE 1.00

* Fast shutdown friggered by
preset disrupftivity threshold.

10.75
« Alarm communicated to ONFR,

> . . . (] [
< S IN line with disruption-free
= 0.50 2
= > protocol for asynchronous
© control and emergency
0,25 response.
ONFR
A Conﬁlnuous l_ _Amctmous_ _ ] DMS
M- i : . e [?
0-95 3.1 3.3 35 3.7 0.00 e s AN R — I
time [<] ey ] R

-—" e s .. e E—— \’t

Closed the |OOp in the PCS by friggering Control Regimes: Continuous _ Asynchronous Emergency
. Prevention Avoidance Avoidance
early rapid shutdown, MGI, and ECH

Di-D *Off-Normal Fault Response — Asynchronous and Emergency response.

1 pm—— N. Eidietis et al., 2018 Nucl. Fusion 58 056023 C.Rea | 287 IAEAFEC | May 2021



DPRF 2.0 shows real-fime feature conitribution computation

(~ 200 ps) and successful ONFR* integration

C. Rea et al. IAEA FEC 2020 DIII-D 180808
: . : ' 0.45
*  Flattop disruption with an Ly 2
° ° ° < 030:_>
impurity accumulation event: =08 E
puffing Ar starting at ~ 2s. - o4 .
0.0 e . . ;
3.2F  real-time peaking factors 13:2
- Peaking factors reflect changes = 2.4 A~
IN profiles due to impurity 1.6
accumulation, leading to an 5 0al ' ! | | -
. . . . . 5 — Ne PP Ireqal-time contributions to disruptivity
iIncrease in calculated disruptivity. 2 || — PrPF |
S 0.08 / b
- Real-time feaiure contributions g ——-—-—-'—-~---*5-'a“ T T
show stronger signature of such time [s]
event. Assessed peaking factors as relevant

metrics in ITER baseline scenario on DIlI-D

Di-D *Off-Normal Fault Response — Asynchronous and Emergency response.
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New (FY20) in DIlI-D PCS: Proximity Controller, glue code

between stability models & actuators regulation

(- - o Generadlized architecture block connecting
* . o oge
multiple input stability models to actuators
Est. Stability Limit . . .
. categories for active regulation:
\
© me“ Proximity Controller:
":'.I:.; \ Stability Models: Avoidance Handling: Target Mods: Other Control Categories:
S .
_'25 ML-VDE p-Est. VDE 7- K é,{ Discharge Shape
= |-~ T TTTT T o/t T T T T T T T T T STRIDE A'-Est. Ideal, 8, GW limits n, Density Control
2 < r
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DPRF included in DIII-D proximity controller, being tested

right now to regulate plasma stability and performance

Proximity Controller:

Disruptivity is a measure of
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DIlI-D and EAST PCS similarities enable portability of DPRF

as general disruption alarm

« DPRF version ported in EAST PCS during 2019-2020, gathered stats on
performances during 2020 campaign.

. Few dedicated discharges to test / \

DPRF as MGI II,ri er Magnetic ParaEqulllbrium PCS
gger. dlagnostlc Category real-time
i computer

oeupion

n/ng = = Predictlon Category Prarger

o Vloop disruptivity
Q\Q) HCN Denslity Alarms
6\ (Ip - Iprog)/lprog diagnostic| Wesiliely" Category
s:\@ t E If (disruptivity > threshold E
) Gos i && lasting for 10 ms) :
N Do (sending trigger signal)
QQ Wmna «Gas injection

(Zcur — Zprog)/a
\ " @
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DPRF installed in EAST PCS: feature contributions and

disruptivity calculated in real-time in ~ 200 ys

94.520 10
__________________________________ 0.8 DPRF trained using
2 300 @ o2 ~400 high Qensi’ry (Ne/Nc >
2 200 ' o 5 0.8) disruptions and ~400
100 ; QM%’ non-disruptive data.

computing
time [us]

o
o

Tested in real-fime on
shots with similar
conditions.

— disruptivity |
w 0.75 n/nG
g —  Vloop
=5 0501 7T g™ .
55 e Tested Iin closed-loop to
T8 fire mitigation system.

4.75 5.00 5.25 5.50 5.75

C. Rea et al. IAEA FEC 2020 tmels]
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EAST DPRF: disruptivity threshold of 0.8 guarantees

TP ~ 92% and FP ~ 10% and avg warning time >1 s

94520
. . —1.0
«  Performance plateau 40-50
' 0.8 . .
300 : > ms before the disrupfion,
g @ H1%°2 guaranteeing > 90% of
2 L 1% 2 correct classifications, while
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5= 240 .
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EE 0.25 2%04 %‘
S E g o
0.00 82 5
e ®02
4.75 5.00 5.25 5.50 5.75 |
C. Rea et al. IAEA FEC 2020 “mels] o L
1072 30 m 1071 109 1012021

17 W. Hu, C. Rea et al., Nucl Fusion 2021 in review



18

Future work, EAST DPRF upgrades:

Shot-by-shot fransition fime 1o unstable operational
space;

Implementation of radiation profiles peaking factors,
also in real-time;

DPRF tailored on impurity-driven (W) disruptions in 2021
experiments;

GA proximity controller ported to EAST will enable DPRF
as stability model for continuous prevention.

Shot #61618

AXUV array fans on EAST

C. Rea | 28" IAEA FEC | May 2021



Interpretable ML + contirol algorithms can be used to

regulate the plasma away from stability limits

- DPRF provides explainable predictions — tfested on C-Mod, EAST, DIII-D:
— Works as real-time scenario detector (DIlI-D, EAST).
QO Tested for asynchronous avoidance and emergency response.

— Now intfegrated with Proximity Controller for continuous
monitoring and stability regulation (DllI-D).

a Ongoing real-fime conirol tests.

» IAEA TM on Plasma Disruptions and their Mitigation material: https.//conferences.iaea.org/event/217/overview

»  Part of the data analysis was performed using the OMFIT integrated modelling framework. (]V|-_||'

I N .
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Future reactors must operate between passively stable

and actively controlled prevention regimes

, Cr.:mhlnuous . Asynci;lronous , DMS s O

A ; . trigger : qi;g
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89

Integration with scenario development mitigation voldanee o

and control optimization <>

I A

| Event and plasma state

: Event detection [Montes 2021]
| predictors needed:

|

|

Continuous stability monitoring
[Rea 2020, 2021]
Survival analysis [Tinguely 2019]

I> Exception handling; | gpgmg'?ssg:?tion [Zhu 2021]

I Time-to-disruption predictions
20 I I ‘ I SI C C. Rea | 28" IAEA FEC | May 2021
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Additional/Backup slides

Useful references:

[Barr 2021] J. Barr et al 2021, 28t |AEA FEC, EX/5-TH/6

[Montes 2021] K.J. Montes et al 2021 Nucl. Fusion 61 026022

[Rea 2020] C. Rea et al 2020 Fusion Sci. Technol. 76 912-24

[Rea 2021] C. Rea et al 2021, 28™ |AEA FEC, EX/P1-25

[Tinguely 2019] R A Tinguely et al 2019 Plasma Phys. Control. Fusion 61 095009
[Zhu 2021] J.X. Zhu et al 2021 Nucl. Fusion 61 026007
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Random Forests* are large collections of randomized and

de-correlated decision trees, i.e. CART models

« CART (Classification and Regression Trees) algorithms repeatedly partition
the input space, o build frees whose end nodes are as pure as possible.

- 2D classification example: 2 features (x;, X,) and 2 classes (red, blue).
e ————— + The algorithm selects ~ This sef of rules, i.e.
i | e the best splitting collection of decision
| St .. value to partition the ~ Paths, is used o classity a
Ry . .+ dataset, by new, unseen (test) sample
05F ., . .o . : . - i minimiZing an @ decision node
o S e, . .. impurity measure: o
o5k . :o . . .. | ” . No branches
. R, 3 ) 7 = _ Nmj i i
e . ‘7 Tt e " ngl Nm ;Z'[ Pmj =052 Pmf decision node @ © leaf
' o U e v e S oduton fo Machine learning”. | nches  Yes No
% s q1 05 0 05 f 18 o ¢ Tree |eOm|n9 VIQ
’ information gain leaf | @ @ | leaf

23 *L. Breimann, Machine Learning 45, 5-32 (2001) mMaximization. R2 R3



Decision paths in (DP)RF irees provide wealth of

accessible information

Example of first three layers in one trained RF tree:

- Wealth of information in each node, e.g.
impurity measure, sample distributions in
the two classes, ...

T T from individual features in
decision path.

: \  Predictions on new samples
["-"‘:{.,.J'l";::.'““] [“""‘“;n?"’;ii;;" ""““T . decomposed in contributions

class = disruptive dlass = disruptive

https://github.com/andosa/freeinterpreter, A. Saabas
A. Palczewska et al., Integration of Reusable Systems (2014).

‘ \ l
m [nq:éiéiig1ilm} al value = [0.6513, 0.3487] ‘
(u/ ) (\::j { o ,155 ({...:) ({...:)
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Decision paths in (DP)RF irees provide local measures of

explainability through information gain and loss

Feature vector example

Vleop @95 n/nG n.equal.l other prediction
normalised features

-4.9 3.2  0.13 0.0002 ~ 0.65

Feature contribution breakdown

Prediction ~ 0.651 ~ 0. 943 (bias term)

erro_{rac <- -0.0625 n_qﬂ_1_nun£imd<- n.m\' +'(j 003, . (gain, Vloop)
[' £ ] [ £ J . {0010 (gun, 095
value = [0.2961, 0.7039] (

value = [0.4006, 0.5994]
ciass - dienuptive loss, n/nG)
!

dlass = disruptive
n_equal_1_normalised < 0.0003
m gini = 0.4718
samples = 0.0%

hhhhh

contiributions,

or information

value = [0.6186, 0.3814] value = [0.6513, 0.3487] ‘

https://github.com/andosa/freeinterpreter, A. Saabas
A. Palczewska et al., Integration of Reusable Systems (2014).

“"“2"“’“'{‘““ ”"“'“T““““ gain (+) and loss (-)
() (@) { 0.65 () (@)

Predictions for forest of M trees can be decomposed in 1 v =1« |
the K contributions from each evaluated input feature: z bias, + 2 Z contriby, (x, k)
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DPRF 2

.0 — additional technical changes to the real-tfime

implementation

- Decision tree collection translates into huge “if-then” PCS external
function: slows down PCS compiling;

-  Remapped DPRF trained structure to hdf5 file:
» Model data can be loaded in the PCS (even different data for

G

> N
O

- Spee
retrai

DIlI-D

NATIONAL FUS "ACILITY

Ifferent phases) at runtime;
ew general hdfs intferface developed — can be adapted for other
ata-driven algorithmes.

ds up rebuilding/compiling time of the PCS and allows flexibility on
ning the algorithms between rundays/experiments.
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DPRF 2.0 — additional technical changes to the real-tfime
implementation

File Show Category Phase

PLASMA CONTROL FOR FUTURE SHOT "reac zzz"
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Predictor File Editor
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