Improved Impurity Retention And Pedestal Performance In DIII-D Closed Divertor

by L. Casali^{1*}

with

T. Osborne¹, D. Eldon¹, B. Grierson², A. Leonard¹, A. McLean³, E. Meier⁴, J. Ren⁵, M. Shafer⁶, J. Watkins⁷, H. Wang¹

¹General Atomics 2 Princeton Plasma Physics Laboratory 3 Lawrence Livermore National Laboratory 4 Zap Energy Inc 5 University of Tennessee Knoxville 6 Oak Ridge National Laboratory 7 Sandia National Laboratory

*Author contact: casalil@fusion.gat.com

Presented at the IAEA Fusion Energy Conference, May 2021

GENERAL

First Impurity Seeding Studies in the Small Angle Slot (SAS) Divertor at DIII-D

General info on recent SAS studies (no seeding): H. Guo et al. NF 59 (2019) L. Casali et al. NME 19 (2019)

Impurities (N₂, Ne) injected simultaneously from gas valves at the corners of the slot

- Langmuir probes (LP_s)
- ASDEX neutral gauges (PGs)
- Surface eroding Thermocouples (SETCs)
- Vertical viewing chord:
 - Spectroscopy (EUV/VUV SPRED, NIRS)
 - Divertor Thomson Scattering (DTS) local T_e, n_e

Outline

• Effect of divertor geometry: varying the OSP location, gas species fixed

• Effect of impurity species: varying the gas species (N, Ne), OSP location fixed

Strike point at inner surface

L. Casali/IAEA/ May 2021

NATIONAL FUSION FACILITY

N₂ seeding in SAS induces detachment while the core is not significantly affected

- Significant neutral pressure rise (p₀>10 mTorr) occurs when N₂ is injected
- Reduction of heat flux in the SETCs
- Clear reduction in T_e with N₂ detected by different DTS channel

L. Casali et al. PoP (2020)

Divertor Spectroscopy Confirms $T_e < 2 \text{ eV}$ with N_2 seeding

Absolutely calibrated (EUV/VUV): •Bright resonance N₂ lines

•Rapid increase in Lyman- β , 1026Å indicating T_e< 2 eV

•N is the dominant divertor radiator

Absolutely calibrated spectrum from NIRS:

Paschen series of D lines, which appear only when $T_e < 2 \text{ eV}$ (bottom).

Higher Levels of Relative N₂ Contamination in the Core Found in the SAS with OSP at the Outer Corner

Effect of divertor geometry: vary the strike point location with a fixed gas species

- Higher core N concentration consistently found with OSP at the outer corner
- This result holds for all the collected database at different power, different density

Dependence of Detachment on Strike Point Location

Matched nitrogen seeded discharges with different strike point location

- LPs shows that detachment onset requires less N₂ puff with OSP at the inboard side
- Results are confirmed by DTS and divertor spectroscopy measurements

With grad-B into divertor, more ionization occurs in PFR and HFS far SOL due to drifts

SOLPS-ITER modeling with full drifts, n-n collisions, D+C+N/Ne performed for the first time at DIII-D

1E4 1E4 w/o drifts 5E3 5E3 With drifts 2E3 2E3 1E3 1E3 5e2 5e2 2E2 2E2 1E2 1E2 5E1 5E1 2E1 2E1 1E1 1E1

D ionization (KA /m³)

- Drifts shift the source radially towards the inner target
- Drifts are necessary to interpret our experiments here

L. Casali et al. PoP (2020)

Ionization Distribution Is Affected By Drifts And Divertor Geometry

D ionization (KA/m^3)

OSP inner surface

Different strike point locations correspond to different wetted area with a different distribution of the D source

Source tightly trapped in the slot, within near SOL

Source out in the common flux region

OSP at outer corner

Divertor Geometry Influences Plasma Flows Via Modification of the Ionization Source Affecting Impurity Transport

 Flow reversal: flow away from the divertor occurs in a flux tube where the ionization source exceeds the ion loss Krasheninnikov NF(1992), Stansfield JNM(1995), Isler PoP(1997), Boedo PoP (1998)

Impurity transport: main ions flow+ drifts

I. Senichenkov et al. PPCF (2019) E. Sytova et al. NME (2019)

Effect of closure:

- Neutral trapping
- Shift in pressure balance
- L. Casali et al. NF (2020)
- L. Casali et al. CPP (2018)
- B. Covele APS (2018)

Reduced Ion and Impurity Leakage with OSP at the Inboard Side

For N/Ne Matched Input Parameters, Ne Increases Radiation In The core While Neutral Pressure In The Slot Decreases

Effect of impurity species: OSP location fixed, varying the gas species (N, Ne)

Dissipation: - N through P_{rad,divertor} - Ne through power loss upstream

L. Casali/IAEA/ May 2021

Both N and Ne Reduce Target q_{II} at OSP But with Ne Particle Flux Down Into the Divertor is Dramatically Reduced

- How can a large reduction of the target heat flux be achieved with T_e being high?
- With Ne: most of the power loss with Ne takes place upstream

SOLPS-ITER: N Accumulates In The Low T_e Regions At Target, Ne Penetrates In The Core, Ne Dissipates Upstream

- N accumulates where T_e is low, Ne instead penetrates upstream
- This agrees with the experimental results that the core is more affected by Ne

Pedestal Reacts Differently to N and Ne Seeding

Two-point model (P. Stangeby 2000):

Different N/Ne Leakage Due To Different Ionization Potential

- Not much N goes in the core
- No change in pedestal

Ionization potential for N (14.5 eV) : N ionizes close to the target: poloidal flow directed downstream, it is retained

Ne ionizes further upstream (21.6 eV) -> leakage

- Ne enters core
- Pedestal gradients steepen

L. Casali/IAEA/ May 2021

Ne concentration in the pedestal increases non-linearly via feedback mechanism with ELM frequency

Conclusions

- Target shaping and drifts affect dissipation and impurity retention by redistributing the recycling source
- Reversal flow for both main ions and impurities has been found in SAS. The impact on the impurity transport explains the experimental finding that N₂ is better retained when the OSP is at the inner slanted surface
- N vs Ne seeding: different pedestal response consistent with the difference in ionization potential, divertor vs upstream dissipation
- Self-enhancing mechanism of Ne involves both divertor and pedestal physics

Conclusions

- Target shaping and drifts affect dissipation and impurity retention by redistributing the recycling source
- Reversal flow for both main ions and impurities has been found in SAS. The impact on the impurity transport explains the experimental finding that N₂ is better retained when the OSP is at the inner slanted surface
- N vs Ne seeding: different pedestal response consistent with the difference in ionization potential, divertor vs upstream dissipation
- Self-enhancing mechanism of Ne involves both divertor and pedestal physics

