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What do we mean by: “

@ We mean that the components of a control architecture work in an
interconnected fashion, rather than working as isolated elements
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In addition, an integrated architecture includes supervisory and exception
handling (S&EH) algorithms and actuator manager(s) (more on this later)
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Summary of this Work: Test Integrated Architecture in
DIII-D with Controllers + Actuator Manager + ONFR
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@ Actuator manager: uses controller commands and control priorities to
calculate optimal actuator commands within physical saturation limits

@ S&EH: Off-Normal Fault Response (ONFR) [4]. Switches control
priorities in real time (e.g. use gyrotrons for NTM control vs W, control)
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Simulations Test Architecture in High-g,,;, Scenario to
Achieve High Performance, NTM-Free Operation

@ Plasma 1: simulated with experimental inputs from shot 172538

— Except for reduced ECH, which results in 2/1 NTM development at 2.7 s

@ Plasma 2: simulated with experimental inputs from shot 172538
— Except for slightly lower 1, (-0.05 MA)
— Maximum ECH simulated, which results in no NTM development

@ Plasma 3: simulated with inputs determined in feedback

— The plasma starts from the conditions and inputs of the first simulation
— The goal is to achieve the scalar evolutions of plasma 2 using feedback

— The feedback scheme does not know the required inputs for plasma 2
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Experiments in DIII-D Test Architecture in High-g,,.,
Scenario Following Similar Ideas as in Simulation

@ Plasma 1: using experimental inputs similar to shot 172538

— Except for reduced ECH <1 MW

@ Target: evolutions far from Plasma 1, but attainable
— Slightly lower I, (~ -0.05 MA)
— Ideally, no NTM development

@ Plasma 3: inputs determined in feedback

— The plasma starts from the inputs of the Plasma 1
— The goal is to achieve the targets using feedback

— The feedback scheme does not know the required inputs for the target
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Conclusion & Future Work

@ An integrated-control architecture has been successfully developed
and implemented in the DIII-D PCS

— Preliminary architecture — work needed to define final architecture

@ |t shows good performance in simulations and DIll-D experiments

— This provides initial validation and encourages further experimental tests

@ Future work may include:

— Addition of new actuators and controllers (e.g. magnetic coils + shape
control, gas puffing + pellet injectors + density control)

— Integration of the architecture with other elements of the DIlI-D PCS (e.g.
integration with Proximity Control)

— Testing in ITER-like scenarios using COTSIM
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What do we mean by: “Integrated Control of
.72

@ Controllability of a profile is sometimes limited. Instead, controlling
associated scalars (e.g. volume-average) can be more attainable
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Current profile:
— Central safety factor, gg
— Edge safety factor, g,

Pressure profile:

— Thermal stored
energy, W

— Volume-average
rotation, €2,
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Architecture has been Tested in Nonlinear Simulations
using COTSIM (Control-Oriented Transport Simulator)

@ COTSIM is a simulation code developed by the Lehigh University
Plasma-Control Group [5] specially suited for control testing and tuning

@ Employs 1D models for current, heat, and momentum transport:
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Under Integrated Feedback (Turned On at 0.9 s), the
Target Scalar Evolutions are Achieved in Simulations

Color code: Plasma 1 (no feedback), Plasma 2 (target), Plasma 3 (feedback: comes on at 0.9 s)
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Feedback Architecture Tested in DIII-D (Turned On at
2 s) with less Actuation Capability than in Simulation

Color code: Plasma 1 (no feedback), Target, Plasma 3 (feedback: comes on at 2 s)
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Appendix A: Actuator Manager Solves a Nonlinear,
Constrained Optimization Problem in Real Time

The actuator commands u are calculated by solving the following problem,

ul Ru
N——
Metric for actuator use

min s’ Qs +
u N——
Metric for controller-request status

subject to constraints

(1) Controller requests: + S

v
slack variables

f(u)
N~~~
nonlinear function

(2) u C Wi

Subset of feasible u

urequests
N——
controller requests

@ Both Q and R prioritize controller requests and actuators, respectively
@ The utility function f(u) is defined by the controllers in use, characterizing
the relative satisfaction of competing priorities as a numerical quantity
@ Some linear examples of f(u):
— Total power = ) . u;, Torque = uco-1, — Ucounter-1,, Actuator failure = u; ( = 0)
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@ Mode suppression by localized ECCD, which is planned for ITER
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Figure source (used with permission): “Active control for stabilization of neoclassical
tearing modes”, by D. Humphreys et al, Phys. of Plasmas 13, 056113 (2006)
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Architecture has been Tested in Nonlinear Simulations
using COTSIM (Control-Oriented Transport Simulator)

@ Employs OD models for the pedestal and island-width evolutions:

. ) wed
Analytical pedestal model: evolves temperature T A pedestal width (predefined or from [9)
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Modified Rutherford equation: evolves island width w T island’s resistive diffusion time
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@ Employs 2D analytical solver for equilibrium reconstruction
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NTM Suppression and the Inputs of the Target Plasma
Simulation are Achieved under Feedback in Simulation

Color code: Plasma 1 (no feedback), Plasma 2 (target), Plasma 3 (feedback: comes on at 0.9 s)
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FB Inputs Achieved Scalar Control and Delay in NTM
Development, but No Significant NTM Suppression

Color code: Plasma 1 (no feedback), Plasma 3 (feedback: comes on at 2 s)
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Appendix B: Nonlinear Control Design for
Catch-and-Subdue Power using Lyapunov Techniques

Island-width control with catch-and-subdue: start with the Modified Rutherford equation

TR dw Jas L arL Kec i . R Kegs . R
S =Agta=2 1 - — 1> Jee k(7)) + g (P
rodt Jo W P w oW

~ i catch-and-subdue
pre-emptive

assume the power of the pre-emptive ECCD clusters is set to the maximum available. By setting
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where Kp > 0 is a design parameter, (1) becomes
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It is assumed that the pre-emptive clusters provide a stabilizing effect, so the last term in (3) is non-positive, and

dw i/
dr < —mK,w — w < we '/ 3 (4)
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where wy is the initial island width, and + £ 1/(a2K,) is the characteristic suppression time. P ¢ is computed
from (2) as
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