Understanding Tungsten

Scenario Following Similar Ideas as in Simulation

- N. Eidietis et al., [4]

Actuators:
- Gyrotrons
- E coil

Controllers:
- Magnet: \(q, \varphi \)
- Kinetic: \(W, T \)
- ECH: NTM

Controller manager: uses controller commands and control priorities to calculate optimal actuator commands within physical saturation limits

- SAEH: Off-Normal Fault Response (ONFR) [5]; Switches control priorities in real time (e.g. use gyrotrons for NTM control vs. E coil control)

- Except for reduced ECH

The goal is to achieve the scalar evolutions of plasma 2 from the feedback simulation

Maximum ECH simulated, which results in evolutions far from Plasma 1, but attainable

- Integrated architecture

- Integrated Control

- Integrated Control of Individual Scalars to Regulate Profiles and Improve MHD Stability in Tokamaks

- Integrated Control of Individual Scalars to Regulate Profiles ...

- Mode suppression by localized ECCD, which is planned for ITER [1]

- Algorithms to track rational surface \(R_{ES} \) with ECCD \(\langle P_{EC}, \rangle \) developed in DIII-D [2]

- May need additional NEUTEC heating to achieve pre-NTM values \(R_{ES} \), which modify \(q, \varphi \), and \(W \) = NTM control, coupled with scalars control

- Integrated architecture includes supervisory and exception handling (SAEH) algorithms and actuator manager(s) (more on this later)

Simulations Test Architecture in High-\(q \) Scenario to Achieve High Performance, HTM-Free Operation

- Plasma 1: simulated with experimental inputs from shot 172538
 - Except for reduced ECH, which results in 2.1 NTM development

- Plasma 2: simulated with experimental inputs from shot 172538
 - Except for slightly lower \(L \) (0.05 MA)
 - Maximum ECH simulated, which results in no NTM development

- Plasma 3: simulated with inputs determined in feedback
 - The plasma starts from the conditions and inputs of the first simulation
 - The goal is to achieve the scalar evolutions of plasma 2 using feedback
 - The feedback scheme does not know the required inputs for plasma 2

- Current profile:
 - Central safety factor, \(q_c \)
 - Edge safety factor, \(q_e \)

- Rotation profile:
 - Volume-average rotation, \(\bar{\Omega} \)

- Pressure profile:
 - Thermal stored energy, \(\bar{P} \)

- Actuators: Gyrotrons, E coil
- Controllers: Magnet: \(q, \varphi \)
- Kinetics: \(W, \bar{R} \)
- ECH: NTM
- Actuator manager: uses controller commands and control priorities to calculate optimal actuator commands within physical saturation limits

- SAEH: Off-Normal Fault Response (ONFR) [5]; Switches control priorities in real time (e.g. use gyrotrons for NTM control vs. E coil control)

- Except for reduced ECH

The goal is to achieve the scalar evolutions of plasma 2 from the feedback simulation

Maximum ECH simulated, which results in evolutions far from Plasma 1, but attainable

- Integrated architecture

- Integrated Control

- Integrated Control of Individual Scalars to Regulate Profiles and Improve MHD Stability in Tokamaks

- Integrated Control of Individual Scalars to Regulate Profiles ...

- Mode suppression by localized ECCD, which is planned for ITER [1]

- Algorithms to track rational surface \(R_{ES} \) with ECCD \(\langle P_{EC}, \rangle \) developed in DIII-D [2]

- May need additional NEUTEC heating to achieve pre-NTM values \(R_{ES} \), which modify \(q, \varphi \), and \(W \) = NTM control, coupled with scalars control

- Integrated architecture includes supervisory and exception handling (SAEH) algorithms and actuator manager(s) (more on this later)

Simulations Test Architecture in High-\(q \) Scenario to Achieve High Performance, HTM-Free Operation

- Plasma 1: simulated with experimental inputs from shot 172538
 - Except for reduced ECH, which results in 2.1 NTM development

- Plasma 2: simulated with experimental inputs from shot 172538
 - Except for slightly lower \(L \) (0.05 MA)
 - Maximum ECH simulated, which results in no NTM development

- Plasma 3: simulated with inputs determined in feedback
 - The plasma starts from the conditions and inputs of the first simulation
 - The goal is to achieve the scalar evolutions of plasma 2 using feedback
 - The feedback scheme does not know the required inputs for plasma 2

- Current profile:
 - Central safety factor, \(q_c \)
 - Edge safety factor, \(q_e \)

- Rotation profile:
 - Volume-average rotation, \(\bar{\Omega} \)

- Pressure profile:
 - Thermal stored energy, \(\bar{P} \)

- Actuators: Gyrotrons, E coil
- Controllers: Magnet: \(q, \varphi \)
- Kinetics: \(W, \bar{R} \)
- ECH: NTM
- Actuator manager: uses controller commands and control priorities to calculate optimal actuator commands within physical saturation limits

- SAEH: Off-Normal Fault Response (ONFR) [5]; Switches control priorities in real time (e.g. use gyrotrons for NTM control vs. E coil control)

- Except for reduced ECH

The goal is to achieve the scalar evolutions of plasma 2 from the feedback simulation

Maximum ECH simulated, which results in evolutions far from Plasma 1, but attainable

- Integrated architecture

- Integrated Control

- Integrated Control of Individual Scalars to Regulate Profiles and Improve MHD Stability in Tokamaks

- Integrated Control of Individual Scalars to Regulate Profiles ...

- Mode suppression by localized ECCD, which is planned for ITER [1]

- Algorithms to track rational surface \(R_{ES} \) with ECCD \(\langle P_{EC}, \rangle \) developed in DIII-D [2]

- May need additional NEUTEC heating to achieve pre-NTM values \(R_{ES} \), which modify \(q, \varphi \), and \(W \) = NTM control, coupled with scalars control

- Integrated architecture includes supervisory and exception handling (SAEH) algorithms and actuator manager(s) (more on this later)