Reducing the L-H Power Threshold in ITER-Similar-Shape DIII-D Hydrogen Plasmas

L. Schmitz with

R.S. Wilcox, D. Shiraki, T.L. Rhodes, Z. Yan G.R McKee, K. Callahan, L. Zeng, Y. Liu, T. Osborne, C. Paz-Soldan, N. Leuthold, F. Laggner, P. Gohil, S.R. Haskey, C. Chrystal, B. Grierson, B. Lyons, C.C. Petty

28th IAEA Fusion Energy Conference

May 10-15, 2021

odd parity n=3

nq(ψ_N

Successful Reduction of P_{LH} in DIII-D ITER Similar Shape Hydrogen Plasmas

 Without mitigation, the L-H power threshold in very high in Hydrogen with dominant electron heating:

 P_{LH} (H) ~ 3× P_{LH} (D) in this regime at ITER-relevant q_{95} ~ 3.6 P_{LH} (H) ~ 2× P_{LH} (D) at higher q_{95} ~5.1

- Achieved ≤ 30% Reduction of P_{LH} in ITER-Similar Shape (ISS) Plasmas with Dominant Electron Heating
- Identified several promising methods to reduce P_{LH} in ITER-relevant hydrogen plasmas:

Approach	Helium Injection	n=3 NRMF/ NTV	Increased Lower Triangularity
Observed P _{LH} Reduction	20-30%	15-25%	5-10%

Motivation: Reduce L-H Power Threshold in ITER PFPO-1 Hydrogen Plasmas (Heating Power May be Marginal)

- ITER Pre-Fusion Power Operation 1: Hydrogen Plasmas at $1/3 B_T$
 - 2008 ITPA Scaling (Martin Scaling): $P_{LH-08}[MW] = 0.049n[10^{20}m^{-3}]^{0.72}B[T]^{0.8}S[m^2]^{0.96}A_i$ shown here for Deuterium (A_i=1), Hydrogen (A_i=2) and Helium (A_i=1.4) for two line-averaged densities:

 $< n_e > / n_{Gr} = 0.4$ and $< n_e > / n_{Gr} = 0.8$

- Available heating power during PFPO-1 is only 20-30 MW ECH (or 20 MW ECH and 10 MW ICRF)
- H-mode access in Hydrogen may be challenging in particular at high Greenwald fraction (dashed red line)

Electron-Heat Dominated Hydrogen Plasmas in ITER-Similar-Shape (ISS): L-Mode Profiles

ITER-Similar-Shape (ISS) Equilibrium

183766 1960 ms $T_{e}/T_{i} > 1$ (core plasma) T_i,T_e (keV) Te T_i>T_e $T_e / T_i < 1$ (edge) <n_>= 1.5-3.7x10¹⁹ m⁻³ 0 B₊ =1.95-2.05 T n_e (10¹⁹ m ⁻³) q₉₅ = 3.6-5.1 3 Balanced NBI ≤ 8 MW + ECH ≤1.5 MW Hydrogen purity (CHERS) L-Modeq₉₅=3.6 n_µ/n_p ~90-95% 0 0.0 0.2 0.4 0.6 0.8 1.0 ρ

ITER-Relevant Regime: Electron-Heat-Dominated ISS Plasmas (ECH, Large Ion-electron Thermal Exchange)

- Plasma core: T_e ≥ T_i, Edge: T_i > T_e:
- Ion-electron thermal exchange
 P_{ie} is important in the edge:

 Collisional exchange P_{ie} is larger in H than in D

P_{LH} is increased by the electron power loss!

ITER-Relevant Regime: Electron-Heat-Dominated ISS Plasmas (No ECH, Large Ion-electron Thermal Exchange)

- Plasma core: T_e ~ T_i, Edge: T_i > T_e:
- Ion-electron thermal transfer
 P_{ie} is important in the edge:

$$P_{ie} \sim n_i n_e (Z_i^2 / m_i) (T_i - T_e) T_e^{-3/2}$$

No ECH: Electron heat flux Is closer to Q_i in the edge

P_{LH} is increased by the electron power loss!

No ECH:
$$\frac{Q_e(\rho = 0.95)}{Q_i(\rho = 0.95)} \sim 1.15$$

Hydrogen plasmas have ~2× Higher Ion Thermal Diffusivity and Ion Heat Flux than Deuterium Plasmas

- Q_i^H(ρ=0.95) ~ 2×Q_i^D(ρ=0.95) in agreement with earlier work*
- Ion Thermal Diffusivity also Increased: $\chi_i^{H}(\rho=0.95) \sim 2 \times \chi_i^{D}(\rho=0.95)$
- Both H and D ISS plasmas have Q_e/Q_i(ρ=0.95) ≥1
 - Thermal fluxes are reduced at high $q_{\rm 95}$ but $Q_{\rm e}$ remains an additional loss channel that increases $P_{\rm LH}$

* F. Ryter et al., Plasma Phys. Control. Fusion 58, 014007 (2015).

Safety Factor Dependence of P_{LH}

L. Schmitz, 28th IAEA FEC, May10-15, 2021

P_{LH} in Hydrogen Depends Strongly on Edge Safety Factor: P_{LH}(H) ~ 3×P_{LH}(D) at low q₉₅

At low q_{95} =3.6, $P_{LH}^{H} \sim 3xP_{LH}^{D}$ (low torque) At high q_{95} =5.1, $P_{LH}^{H} \sim 2xP_{LH}^{D}$ (low torque)

 $P_{LH}^{1} = P_{NBI} + P_{ECH} + P_{OH} - dW_{dia} / dt$

Martin scaling (Hydrogen: A_i= 2): $\left(P_{LH-08}[MW] = 0.049n[10^{20}m^{-3}]^{0.72}B[T]^{0.8}S[m^{2}]^{0.96}A_{i}\right)$

At Low Density, P_{LH} is Increased ~1.5× at Low q_{95} in Comparison to High q_{95}

- Strong Torque dependence for low and high q₉₅
- Threshold is above Martin scaling high and low and q₉₅

More Pronounced Safety Factor Dependence of P_{LH} at Higher Density

At high q₉₅ and low torque, threshold is below the Martin scaling

- Favorable P_{LH} scaling if L-H transition is initiated during ITER current ramp
- Safety factor dependence of P_{LH} is more pronounced in hydrogen than in deuterium

Helium Admixtures

L. Schmitz, 28th IAEA FEC, May10-15, 2021

He-Admixtures: 10-20 ms Moderate Helium Puff Reduces P_{LH}

Helium Admixtures $n_{He}/n_e \sim 25\%$ Reduce the L-H Power Threshold in Hydrogen Plasmas by ~ 30\%

- P_{LH} reduction observed at low and high L-mode density
 - below/above the predicted power threshold minimum:*

 $n_{\min} = 0.7 I_p^{0.34} B_T^{0.62} a^{-0.95} (R / a)^{0.4}$ ~ 3.1 - 3.5 × 10¹⁹ m⁻³

- n_{He}/n_e ratio in the plasma edge determined via CHERS
 - n_{He}/n_{e} integrated over $\rho {=} 0.75{\text{-}}1$
 - $n_H/n_D \sim$ 90-95% also inferred from CHERS and divertor spectroscopy

*F. Ryter el al.

Nucl. Fusion 2014

P_{LH} vs. relative Helium Density

Moderate He Fractions Reduce P_{LH} by up to 30% in Hydrogen ISS Plasmas

- He/H ratio in the plasma edge (ρ ≥ 0.75) determined via CHERS
- Shown is P_{LH} vs. the Helium ion fraction in the ensuing H-mode
- P_{LH} reduction measurable at n_{He}/n_H ~ 10%
- Z_{eff} (including He and C) remains reasonable:

Z_{eff} (H-mode) ≤ 2.2

P_{LH} vs. He/H Ion Fraction

H-mode Confinement Degradation is Minimal even at Relatively High Helium Ion Faction

- Pedestal Density Increases by ≤10%.
- Electron and ion temperatures decrease by less than 5% across the minor radius

Doppler Backscattering and Beam Emission Spectroscopy for Turbulence and Flow Measurements

DBS measures $E \times B$ flow and density fluctuation levels \tilde{n} (k₁)

17 NATIONAL FUSION FACILITY

L. Schmitz, 28th IAEA FEC, May10-15, 2021

BES provides Reynolds stress from velocimetry analysis

With Significant Helium Fraction, the Transition Occurs at Lower Edge Ion Pressure Gradient and E×B Shear

- Hydrogen: High core χ_i: Increased core efflux (heating power) required to build a critical (normalized) edge pressure gradient
- Reduced core χ_i with Helium: Transition at lower edge pressure gradient and E×B shear with higher He fraction
- Reduced *E×B* shear: Edge density fluctuation level Is increased!

L. Schmitz, 28th IAEA FEC, May10-15, 2021

Time (ms)

Applied NRMF/NTV

L. Schmitz, 28th IAEA FEC, May10-15, 2021

n=3 Non-Resonant Magnetic Perturbations (C-Coil/I-Coil) Potentially Impact Edge ExB Shear and P_{LH} via NTV

L. Schmitz, 28th IAEA FEC, May10-15, 2021

n=3 Non-Resonant Magnetic Perturbations (C-Coil/I-Coil) Potentially Impact Edge ExB Shear and P_{LH} via NTV*

- n=3 C-coil or odd parity I-coil
- Non-resonant perturbations can generate edge counter-torque via Neoclassical Toroidal Viscosity (NTV)
- Expect NTV torque up to ~1.5 Nm at low ion collisionality
- Can we tailor n=3 field profile and NTV via combination of I-coil and C-coil?

$$\frac{nm_{i}\partial\left\langle R^{2}\Omega_{\phi}\right\rangle}{\partial t} = -nm_{i}\mu_{II}(\nu_{ii})\left[\frac{\delta B_{NRMF}}{B}\right]\left(\left\langle R^{2}\Omega_{\phi}\right\rangle - \left\langle R^{2}\Omega_{NTV}\right\rangle\right)$$

 $\Omega_{\rm NTV}$: Offset rotation

*A.J. Cole et al. Phys. Plasmas 3527 055011 (2011)

L. Schmitz, 28th IAEA FEC, May10-15, 2021

Non-res. Field w/ Plasma Response

Initial Evidence: NTV from Applied Non-resonant Magnetic Fields Reduces Edge Toroidal Rotation and P_{LH}

L. Schmitz, 28th IAEA FEC, May10-15, 2021

Applied n=3 NRMF Reduces P_{LH} by 15-25% in ISS Hydrogen Plasmas (q_{95} =3.6)

- Largest effect from C-coil NRMF (I-coil not tested sufficiently)
- Initial evidence that Counter-I_p torque from Neoclassical Toroidal Viscosity increases edge E×B shear
- Experiments conducted at low ion edge collisionality to enhance NTV

NATIONAL FUSION FACILI

23

• P_{LH} reduced due to edge NTV counter-torque?

P_{LH} w/wo NTV vs. Torque

A Small Reduction in Lower Triangularity Reduces P_{LH} in Hydrogen Plasmas by 5-10%

- P_{LH} is reduced when the Lower triangularity changed from $\delta_L \sim 0.8$ to 0.72 (10%)
- Potential concomitant increase in divertor neutral pressure
- Reduction observed across range of NBI torque
- (Very) small database of deuterium shots showing a similar reduction effect

Summary

- Helium injection reduces P_{LH} substantially in electron-heatdominated ISS hydrogen plasmas (≤ 30% for n_{He}/n_H ~ 25%)
- Applied n=3 NRMF (C-coil) reduces P_{LH} by ~ 15-25%
 - most effective at finite co-torque
 - ITER can likely produce sufficient edge NTV with partial set of 3D-coil power supplies during PFPO-1
- A pronounced q₉₅ dependence of power threshold was observed in Hydrogen: P_{LH}^H is 3×P_{LH}^D at ITER-relevant (low) q₉₅
 - Accessing H-mode at higher q₉₅ during the current ramp may be beneficial in ITER
- Without mitigation measures, the power threshold is expected to be significantly higher than 2×P_{LH-08} in electron-heatdominated ITER hydrogen plasmas

*Part of the data analysis was performed using the OMFIT integrated modeling framework; O. Meneghini et al., Nucl. Fusion 55 083008 (2015).

