Advances in Understanding High-Z Sourcing, Migration, and Transport on DIII-D from L-mode to High-Performance Regimes

Tyler Abrams¹ (abramst@fusion.gat.com)

J. Guterl¹, H.Y. Guo¹, D.M. Thomas¹, E.A. Unterberg², J.H. Nichols², D.C. Donovan³, S.A. Zamperini³, A. Cacheris³, D.L. Rudakov⁴, J.D. Elder⁵, P.C. Stangeby⁵, W.R. Wampler⁶, D.A. Ennis⁷, C.A. Johnson⁷, S.D. Loch⁷

¹General Atomics
²Oak Ridge National Laboratory
³University of Tennessee – Knoxville
⁴University of California – San Diego
⁵University of Toronto Institute for Aerospace Studies
⁶Sandia National Laboratories
⁷Auburn University

28th IAEA Fusion Energy Conference May 10-15, 2021

Outline

- Motivation and Introduction (Slide 3)
- Tungsten Sourcing
 - Spectroscopic inference via S/XB method (Slide 7)
 - Steady state: gross v. net erosion (Slide 9)
 - Transients: Erosion during ELM mitigation (Slide 12)
- Global Tungsten Transport
 - Impact of ExB drifts on W migration (Slide 17)
 - Radial W convection calculated with 3DLIM (Slide 20)

Stringent tungsten core contamination limits in ITER and beyond motivate understanding W sourcing and transport

- W divertor source in ITER expected to be dominated by ELMS
 - Physical sputtering by energetic ions streaming out from pedestal
 - Motivates developing validated understanding for ELMy W source
- Models for W 'divertor retention probability' mostly untested
 - Prompt re-deposition controlled by sheath E field and gyro-motion?
 - SOL transport probably governed by friction force, $\nabla_{\parallel}T_i$ forces, and drifts?

JET-ILW: ELMy W source persists with detached divertor

DIII-D Strategy: Understand Divertor High-Z Sourcing & Transport in H-mode Through Tracer PMI Studies with Predominately Low-Z Wall

- Goal: probe all 3 links in W impurity chain:
 Source → SOL Transport → Core
 - SOL Transport is least well understood (difficult to diagnose)
- First 'large-scale' W PMI studies on DIII-D
 - Builds upon success of local gross/net W erosion studies using DiMES^{1,2,3}
- DIII-D's predominantly low-Z wall allows for W source localization studies
 - Further localize strike-point vs. far-target regions via isotopically-enriched W

¹Abrams NF 2017 ²Ding NF 2017 ³Guterl NME 2018 Abrams et al./IAEA-P1-660

DIII-D Metal Rings Campaign (MRC) used 2 isotopically distinct W Sources Localized at 2 Locations in Outer Lower Divertor Region

- Rings consist of W-coated TZM Mo inserts
- Different W isotopic mixes used in each ring

"Floor" Ring Natural W
26.5% W-182
(25±15 μm)

- "Shelf" Ring Enriched W 93% W-182 (2±1 μm)
- Isotopic ratios in W deposits on collector surface resolved via inductively coupled plasmamass spectrometry (ICP-MS)

Donovan RSI 2018 Unterberg NF 2019

Abrams et al./IAEA-P1-660

MR Campaign Leveraged Wide Collection of DIII-D Diagnostics, with Several Notable Capability Enhancements

4 new views for MDS (high res. spectrometer) 1.5 167540 2600 UV spectroscopy + W I filterscopes¹ WI imaging Diagnose W source via Floor ¹Abrams IEEE-TPS 2018 S/XB method MDS/ ²Geier PPCF 2002 fscope ³Johnson PPCF 2019 0.5 Midplane collector probe² Shelf MDS/ Measure main SOL W flux fscope **E**₀ DTS Collector probe UV (200-400 nm) spectroscopy SB Many WI & WII lines monitored³ FB Shelf -0.5 rina 2 new LPs^{*} at shelf ring radius **DIMES** -1 Existing: DTS, WI imaging, DiMES Floor ring *Langmuir Probes -1.5

Abrams et al./IAFA-P1-660

2.5

Prompt Re-Deposition is an Important Process Regulating Net Erosion in the Divertor

- Prompt re-deposition typically assumed to be regulated by λ_{iz} and $\rho_W^{1,2}$
- Recent studies suggest sheath electric field also increases re-deposition^{3,4,5}

¹Naujoks NF 1996 ²van Rooij JNM 2013 ³Tshakaya NME 2018 ⁴Guterl PET 2019 ⁵Johnson PSI 2021

Understanding W re-deposition physics requires high-fidelity measurement techniques!

Tungsten Re-deposition Can be Inferred Through the Ionizations/Photon (S/XB) Method

- Simplified picture of W sourcing, ionization, & re-deposition:
 - Steady state (d/dt = 0)
 - Homogenous near-surface plasma
 - Impurities travel only in \hat{z} direction
 - Neglect transport, recomb., CX, etc.
- Measure W re-deposition spectroscopically: (from charge states 0 to N)

$$\Gamma_{redep} = \left(\frac{S}{XB}\Phi_{\lambda}\right)_{0} - \left(\frac{S}{XB}\Phi_{\lambda}\right)_{N}$$
Gross
Erosion
"Escaping"
Tungsten

Refinement of method from previous JET-ILW work¹

W⁺ Re-Deposition Inferred in DIII-D Using Stationary, Attached, L-Mode Plasmas

Caveat: WI contamination in WII emission region may result in over-estimation of W net erosion

Cross-check with W probe and high-res. spectrometer on CTH¹

- WI contaminants only add up to 2% of WI 400.9 nm intensity
 - (but 50-60% of WII intensity...)

Wavelength (nm)	Relative Intensity (NIST)	Relative Intensity (Meas.)	Frac. of light expected within integ. region
WI 364.013	40	50.6	0.649
WII 364.141		161	0.931
WI 364.185	20	33.5	0.757
WI 364.281	20	26.8	0.618
WI 400.875	1000	1000	0.930

Abrams et al./IAFA-P1-660

¹Johnson APS-DPP 2019

WI 400.9 nm Intensity (AU)

Sheath Model Shows Better Consistency with Experimental Data Than Gyro-Orbit Model (When W Ionizes Close to Surface)

1D Free-Streaming plus Recycling Model (FSRM) Developed for Particle/Heat Flux During ELMs to Infer W Sputtering at the Targets

Flux tube from pedestal top detaches into SOL \rightarrow divertor^{1,2,3}

– No interaction with background (inter-ELM) plasma

 L_{ELM} = Extent of ELM filament⁴ = $2\pi R q_{edge}$

 L_{\parallel} = ELM connection length^{5,6} = 9 L_{ELM}

 R_{eff} = Effective recycling coeff.⁷ = free parameter

 $q_{edge} = \frac{a_{\text{pol}}}{R_{\text{OMP}}} \frac{B_{\text{T,OMP}}}{B_{\text{n,OMP}}}$

Outputs: Target density $(n_{e,div,FS})$, ion flux $(\Gamma_{\parallel,FS})$, heat flux $(q_{\parallel,FS})$ vs. time

Inputs: $n_{e,ped}$, $n_{Z,ped}$, T_{ped} ,

 $L_{ELM}, L_{\parallel}, R_{eff}$

¹Fundamenski PPCF 2006 ²Manfredi PPCF 2010 ³Moulton PPCF 2013 Abrams et al./IAEA-P1-660

⁴Eich NME 2017 ⁵Huysmans PPCF 2009 ⁶Guillemaut NF 2018

Use Free Streaming plus Recycling Model to Predict Tungsten Sputtering During ELMs

- W gross erosion during ELMS includes physical sputtering by:
 - Free-streaming main ions from pedestal
 - Free-streaming impurities from pedestal
 - Recycling main ions in divertor
 - Recycling impurities in divertor
- Assumptions for DIII-D:
 - Equal C concentrations in pedestal & divertor
 - C^{6+} / C^{2+} are the only FS / recycling impurities¹⁻³
 - Ions impact at 45° w/ energy $E_i = q_{\perp}/\Gamma_{ion,\perp}$
 - 50% C coverage on W surfaces, in line with previous studies¹⁻⁵

¹G. Xu PSI 2018 ²R. Ding NF 2016 ³Guterl PSI 2018 ⁴Y. Ueda FED 2006 ⁵Shimada JNM 2004

Energy / ion (eV)

W gross erosion measured by coherent averaging of WI filterscope signals and applying S/XB method

- Detect ELM start times
 - Rising edge of $D\alpha$ filterscope signal
 - Set threshold to filter similar, large ELMs
- Shift ELM time bases such that $t_0 = t_{ELMSTART}$
- Average WI fscope traces together
- W gross erosion, Γ_W, inferred using time-dependent S/XB method:

$$\Gamma_W(t) = \frac{S}{XB}(t) \int_0^\infty I_{WI}(t) \, dz$$

- WI S/XB coefficients obtained from ADAS atomic physics database¹
- Dependence of WI S/XB on density during ELMs is important²

Pellet pacing tends to reduce W sputtering per ELM, but RMPs slightly increase sputtering and lower ELM connection length

• ELM Mitigation via Pellet Pacing or Resonant Magnetic Perturbations (RMPs)

- Pellets reduce f_{C,ped}, reducing sputtering by free-streaming C⁶⁺ impurities
- Pellets also lower $T_{e,div'}$ which lowers $Y_{C \rightarrow W}$ for recycling C^{2+}

- Total W erosion slightly increases, despite slight decrease predicted by FSRM?
- Peak W erosion rate increases significantly, suggesting RMPs cause a decrease in L_{\parallel}

Higher frequency pellets more effective at reducing W sputtering, but no effect observed with RMPs

- Low-frequency pellets actually increase W erosion above no-pellet level
- No correlation between RMP current and W erosion at any injection power

Abrams et al./IAEA-P1-660

Time-resolved deposition measurements exhibited non-local W re-deposition patterns during MRC L-mode experiment

 Time-resolved W deposition measured by DiMES slices removed at different stages of the experiment

Constant W coverage on inner half of DiMES

W deposition increasing in time on outer half of DiMES (4-8 cm from closest W source)

> [Rudakov FED 2017] [Wampler Phys Scr 2017]

Near-surface W transport simulation via OEDGE background reconstruction and DIVIMP/WallDYN mixed-material model

D.C.W

Net erosion

Reaction

Bulk layer

(C or W

18

laver (C/W)

WallDYN model

CW

D.C.W

OEDGE (OSM-EIRENE) quasi-1D fluid calculation of n_e, T_e

- $T_{e,target}$ from DTS, $J_{sat,target}$ from LP
- $T_{e,div}$ and $n_{e,div}$ matched to DTS via volumetric power/mom. Losses

DIVIMP: 2D Monte Carlo impurity transport

– Il forces, Collisions, II/1 diffusion, Ionization/recomb. (ADAS), ExB drifts

• WallDYN 1.0: Self-consistent mixed-material surf. evolution

- Mixed material sputtering/reflection rates
- Includes multiple re-erosion and re-deposition steps for both W and C

Interpretively model spatial patterns of W deposition by scanning through ExB drift strength in DIVIMP-WallDYN

- With no ExB drift, no deposition peak
- With 100% ExB drifts, deposition peak is too small
- Can artificially scale ExB velocity in DIVIMP (without changing background plasma):

 $v^{ExB} = (X\%) * v^{ExB}_{OEDGE}$

- Increasing ExB drift strength:
 - Moves deposition peak radially outward
 - Reduces magnitude of deposition peak
- Best match to deposition data obtained with 60% ExB scaling
 - SOL currents (not included yet) may flatten plasma potential gradients

3DLIM is a new plasma impurity transport code to simulate W deposition on a collector probe in the far-SOL

- 1. Background plasma in near-SOL obtained from OEDGE/DIVIMP
- 2. 3DLIM creates plasma solution in region between edge of DIVIMP grid and the wall
- 3. W density in outermost DIVIMP grid cells is the B.C. inputted to 3DLIM
- 4. Adjust plasma background, W source, $D_{\perp,W}$ or $v_{\perp,W}$, etc. to match measured CP deposition patterns

3DLIM successfully reproduces W CP deposition profiles assuming purely convective radial W transport

Bx7B↑ 3DLIM Results

Abrams et al./IAEA-P1-660

DIVIMP+3DLIM support hypothesis of a near-SOL W accumulation only when $B \times \nabla B \uparrow$

Ratio of W deposited on inner-target facing (ITF) and outer-target facing (OTF) sides of W collector probe

- DIVIMP can impose SOL patterns qualitatively similar to measurements
 - Bx∇B↑: Near-SOL W accumulation due to T_i-gradient force
 - BxVB : Accumulation is flushed out due to fast inner target directed flows
- Measurements and 3DLIM support DIVIMP prediction of a near-SOL W accumulation only for the BxVB[↑] direction
- Highlights the importance of accounting for flows in SOL impurity transport modeling

- First measurements of prompt re-deposition of W⁺ have been conducted in DIII-D divertor and agree fairly well with sheath model
- Higher frequency pellet pacing effective at reducing W sputtering during ELMs, but no clear effect observed with application of RMPs
- WallDYN model agrees well with experimental W re-deposition pattern only when E × B drifts (adjusted to 60%) are accounted for
- Net force on high-Z impurities in the far-SOL changes with ion B×VB drift direction in DIII-D, suggesting strong high-Z entrainment in SOL flows

For more information...

- T. Abrams et al., Nucl. Mater. Energy 17 (2018) 164–173 <u>https://doi.org/10.1016/j.nme.2018.10.011</u>
- T. Abrams et al., Phys. Plasmas 26 (2019) 062504 <u>https://doi.org/10.1063/1.5089895</u>
- S.A. Zamperini et al., Nucl. Mater. Energy 25 (2020) 100811 <u>https://doi.org/10.1016/j.nme.2020.100811</u>
- J.H. Nichols et al., "Modeling of ExB effects on tungsten re-deposition and transport in the DIII-D divertor," *Nucl. Fusion* (2021) submitted

