Divertor detachment and radiated power control developments on DIII-D and EAST

D. Eldon¹, H.Q. Wang¹, L. Wang², J. Barr¹, S. Ding³, A. Garofalo¹, X.Z. Gong², H.Y. Guo¹, A. E. Järvinen⁴, A. W. Leonard,¹ K.D. Li², J. McClennen1, A. G. McLean⁴, A. L. Moser,¹ P. B. Snyder¹ J. G. Watkins⁵, D. Weisberg¹, T. M. Wilks⁶, Q. P. Yuan²

¹General Atomics, 3550 General Atomics Ct., San Diego, CA 92121, USA
²Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China
³Oak Ridge Associated Universities
⁴Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
⁵Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
⁶Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA

presented at the
28th IAEA Fusion Energy Conference

2021-05-11
Divertor detachment and radiated power control developments on DIII-D and EAST

- Detachment control systems using Langmuir probe (LP) feedback added at DIII-D and EAST
- Stable divertor T_e (new, using EAST’s triple LPs) or J_{sat} (based on JET\(^{(1)}\)) and can follow dynamic targets (new, aggressive demonstration of control capability)
- Integrated with core scenario to allow up to $H_{98, \gamma 2} \approx 1.5$ (DIII-D), 1.1 (EAST); $\beta_p \approx 2.3$ (DIII-D), 1.5 (EAST) while detached\(^A\)
- Similar outcomes despite differences in divertor material, geometry, impurity species (first successful use of Ar for control at EAST), and heating method
- Radiated power control deployed in super-H mode

\(^A\) Based on DIII-D#180257, EAST#85293
Related presentations

- Liang Wang, High β_p, talk #892 May 14
 - Poster #1497 May 11

- Theresa Wilks, Super H-mode, talk #863 May 12
 - Poster #1443 May 11
Introduction and motivation

Detachment control system

High β_p scenario core performance with detachment control

Radiated power control near super H-mode

Conclusions
ITER requires heat exhaust mitigation such as divertor detachment to protect plasma facing components \(^{(3, 2)}\)

- Detach = dissipate energy and momentum along the open field lines
- \(T_e(R, Z)\) sets where dissipation processes turn on \(^{(2)}\)
- Reduce \(Q_{SOL}\) until tolerable by PFCs \((\lesssim 10–15 \text{ MW m}^{-2})\) \(^{(3, 4)}\)
- Reduce \(T_e\) at the plate to avoid sputtering
Divertor control is an optimization problem

- Detach by increasing n_e or P_{rad}
 - Prevent divertor melting & sputtering
- Can cause problems for core
 - Lower confinement
 - MARFE
 - H-L transition
 - Radiative collapse
 - Density limit
- Optimum set point is not static
 - Control must adapt

D. Eldon, EX/P1-934/IAEA FEC, Nice/2021-05-11
Not all scenarios allow successful integration studies on present devices

- Open divertor: higher n_e required for detachment
- RMP or ECH in DIII-D: low n_e required
- High performance DIII-D scenarios typically do not tolerate detachment
- Detachment studied in low performance scenarios

D. Eldon, EX/P1-934/IAEA FEC, Nice/2021-05-11
The high β_p scenario was able to maintain confinement in detachment

Motivation: $\beta_p \propto I_{bs}/I_p$
- Steady-state relevant
- First development on JT-60U6
- Pedestal is degraded by detachment
- ITB maintains confinement
- Supports core-edge integration studies on DIII-D and EAST

$\beta_p = 2\mu_0 \langle p \rangle_A / \langle B_{pol} \rangle^2$

$\langle p \rangle_A$ = pressure averaged over poloidal cross section
$\langle B_{pol} \rangle$ = average poloidal magnetic field on the boundary

Similar high β_p scenarios developed in DIII-D and EAST

<table>
<thead>
<tr>
<th></th>
<th>DIII-D</th>
<th>EAST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target material</td>
<td>C</td>
<td>W</td>
</tr>
<tr>
<td>Target geometry</td>
<td>horiz</td>
<td>vert</td>
</tr>
<tr>
<td>PF coils</td>
<td>Cu</td>
<td>SC</td>
</tr>
<tr>
<td>P_{beam} / MW</td>
<td>6.8</td>
<td>0.0</td>
</tr>
<tr>
<td>P_{RF} / MW</td>
<td>0.0</td>
<td>2.9</td>
</tr>
<tr>
<td>P_{total} / MW</td>
<td>6.9</td>
<td>3.0</td>
</tr>
<tr>
<td>q_{95}</td>
<td>7.9</td>
<td>6.5</td>
</tr>
<tr>
<td>β_p</td>
<td>2.3</td>
<td>1.5</td>
</tr>
<tr>
<td>β_N</td>
<td>3.0</td>
<td>1.2</td>
</tr>
<tr>
<td>$H_{98,y2}$</td>
<td>1.8</td>
<td>1.1</td>
</tr>
<tr>
<td>$\langle n_e \rangle$ / 10^{19} m$^{-3}$</td>
<td>6.2</td>
<td>5.3</td>
</tr>
<tr>
<td>I_p / MA</td>
<td>0.7</td>
<td>0.4</td>
</tr>
<tr>
<td>Impurity species</td>
<td>N_2</td>
<td>Ne</td>
</tr>
</tbody>
</table>

D. Eldon, EX/P1-934/IAEA FEC, Nice/2021-05-11
Introduction and motivation

Detachment control system

High β_p scenario core performance with detachment control

Radiated power control near super H-mode

Conclusions
Detachment is characterized by low $T_e \& J_{sat}$ rollover

- **Attached:** $J_{sat} \propto \langle n_e \rangle^2$ (more particles hit divertor)
- **Detached:** momentum loss reduces J_{sat}
- J_{sat} “rolls over” as density increases
- **Degree of detachment** \(\propto \langle n_e \rangle^2 / J_{sat} \)

DIII-D data

\[
J_{sat} = 1.01 \langle n_e \rangle^2
\]

DIII-D #180257 1250-5000 ms

D. Eldon, EX/P1-934/IAEA FEC, Nice/2021-05-11
DIII-D & EAST studies in similar scenarios using sensors in the divertor and nearby gas inlets

DIII-D probes:

EAST probes: (8)

DIII-D demonstrates ability to follow dynamic J_{sat} targets with PID loop between LP & N$_2$ puff.
Dynamic target following performance is probably not overly sensitive to scenario details.

Neon control on DIII-D can be challenging; may be easier in this scenario.

DIII-D data
First use of triple-tip Langmuir probes for $T_{e,\text{div}}$ control

- EAST J_{sat} control has been documented previously

- Fast & simple T_e from triple probes

EAST demonstrated ability to meet a range of targets using feedback of T_e from 3LP

* ΓZ is the flow of impurity gas out of the tank
T_e and J_{sat} are reduced across the whole divertor target plate.
Tangential TV(11) shows CIII emission moving from target to X-point, consistent with detachment.

Control limitations and considerations

- So far: rely on fixed strike point instead of RT analysis of profiles from multiple LPs \rightarrow vulnerable to strike point drift
 - Some EAST data thrown out after strike point drifted
 - Longer EAST pulse \rightarrow more drift \rightarrow improvement needed
- LPs might have trouble measuring low T_e
 - EAST: 200 V external voltage makes calculations easy, but reduces sensitivity to low T_e
 - Probes might overestimate T_e at low $T_e^{(12)}$
- T_e sensitivity decreases with further progress into detachment; for example:
 - Detachment onset: $\gtrsim 10$ eV to ≈ 5 eV
 - DOD=2 to DOD=4: ≈ 5 eV to ≈ 4 eV

J_{sat} can be a more sensitive indicator of progress deeper into detachment than T_e.
High β_p scenario core performance with detachment control

Introduction and motivation

Detachment control system

High β_p scenario core performance with detachment control

Radiated power control near super H-mode

Conclusions
Maintained H_{98} and β during detachment in DIII-D high β_p scenario

DIII-D data

$J_{\text{sat}} / J_{\text{roll}}$
Target

N_2
$\Gamma_{N_2} / 10^{21} \text{ el s}^{-1}$

β_N, β_p, H_{98,Y_2}, $\tau_E / 100 \text{ ms}$
ITB retains confinement even as the pedestal degrades due to heavy puffing

- High fuel or impurity puffing can degrade pedestal
 - By $\approx 20\%$ in this case

- ITB growth compensates for pedestal degradation
 - By $\approx 30\%$

DIII-D data

EAST high β_p scenario has significant core gradients that could compensate for weakened pedestal.
EAST retains $H_{98} \geq 1$ unless heavy argon puff ($\approx 10\%$ loss) or depleted Li coating ($\approx 20\%$ loss).
EAST retains $H_{98} \geq 1$ unless heavy argon puff ($\approx 10\%$ loss) or depleted Li coating ($\approx 20\%$ loss)

![Graphs showing EAST data for 50% Ne+50% D₂ and 50% Ar+50% D₂](image-url)
Although confinement quality remained good, disruption risk increased during neon seeding in DIII-D high β_p.

DIII-D data

D. Eldon, EX/P1-934/IAEA FEC, Nice/2021-05-11
In DIII-D, neon was associated with more disruptions than nitrogen when used for detachment control in high β_p.

<table>
<thead>
<tr>
<th>Gas</th>
<th>Safe rampdown</th>
<th>Disruption in rampdown</th>
<th>Disruption in I_p flattop</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen</td>
<td>11</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Neon</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

DIII-D data, from the same run as #180257
Radiated power control near super H-mode

Introduction and motivation

Detachment control system

High β_p scenario core performance with detachment control

Radiated power control near super H-mode

Conclusions
Super H-mode enables higher pedestal height and fusion performance than for H-mode

- Super H-mode exists in narrow region of parameter space, first predicted by EPED(16)

- Performance boost is all from pedestal
 - In contrast to high β_p, where performance depends more on ITB & pedestal can be sacrificed

EPED Predictions for Medium Seeded Case

<table>
<thead>
<tr>
<th>Pedestal Pressure [kPa]</th>
<th>Pedestal Density [$n_{e,ped}(Z_{eff}/2)^{1/2}, 10^{19}m^{-3}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>35.0</td>
<td>8.0</td>
</tr>
<tr>
<td>30.0</td>
<td>7.0</td>
</tr>
<tr>
<td>25.0</td>
<td>6.0</td>
</tr>
<tr>
<td>20.0</td>
<td>5.0</td>
</tr>
<tr>
<td>15.0</td>
<td>4.0</td>
</tr>
<tr>
<td>10.0</td>
<td>3.0</td>
</tr>
<tr>
<td>5.0</td>
<td>2.0</td>
</tr>
</tbody>
</table>

See Talk #863 by T. Wilks, May 12

DIII-D DATA
DIII-D’s radiated power control system(17) uses foil bolometers(18)

- Voltage on the foils ($\Delta V_{bol,j}$) converted into estimate for radiated power from lower divertor ($P_{rad,div,L}$)

- Plasma region can be changed ($P_{rad,core}, P_{rad,div,U}, P_{rad,\Sigma}$) by selecting different bolometer channels

\begin{align*}
P_{d,j} &= \left(A_j \cdot \Delta V_{bol,j} + B_j \cdot \frac{d}{dt} \Delta V_{bol,j} \right) \quad (1) \\
P_{rad,j} &= 2\pi R_j r_j \Delta \theta_j K_j P_{d,j} \quad (2) \\
P_{rad,div,L} &= \sum_j C_j P_{rad,j} \quad (3)
\end{align*}
Radiated power control works in super-H mode, but degrades confinement quality.

- **Nitrogen injection** → up to 70% P_{rad}
- **ITER needs** $\approx 70\% P_{rad}$ (19, 20, 21)
- **Confinement (H_{98})** degraded by 25% at highest P_{rad}
- **Super H is lost at higher P_{rad}**
 - 60% P_{rad}: super H lost partway through (marginal)
 - 70% P_{rad}: not super H
Conclusions

Introduction and motivation

Detachment control system

High β_p scenario core performance with detachment control

Radiated power control near super H-mode

Conclusions
Summary: LP detachment control integrated with core scenario while maintaining confinement

- DIII-D(22) & EAST(9) added J_{sat} control similar to JET(1)
- EAST added triple Langmuir probe T_e control
- Control avoids excess puffing, while high β_p scenario tolerates detachment w/ high confinement (ITB ...)
- Achieved $H_{98} \approx 1.5$ and $\beta_p \approx 2.3$ in controlled detachment in DIII-D
- Achieved $H_{98} \approx 1.1$ and $\beta_p \approx 1.5$ in controlled detachment in EAST
- Radiated power control added to super-H mode for up to 70% P_{rad}

