MHD stability constraints on divertor heat flux width in DIII-D

by A.W. Leonard¹

A.E. Jaervinen², A.G. McLean², T.H. Osborne² and F. Scotti²

¹General Atomics, USA ²Lawrence Livermore National Laboratory, USA

28th IAEA Fusion Energy Conference (FEC)

Virtual Online Conference 10-15 May, 2021

Recent analysis suggests MHD stability limits the density range of ITPA heat flux width scaling

- Eich¹ finds separatrix pressure gradient limit in JET and ASDEX-U
 - Derive MHD limit for ITPA heat flux width scaling at n_{sep}/n_{GW} ~0.5
 - SOL broadens at high pressure gradient and/or collisionality

Goal: Examine DIII-D data for similar trends and implications

- Vary power and density for scanning separatrix pressure and its gradient
- Correlate high separatrix gradients with SOL, divertor and pedestal behavior

SOL broadening observed in DIII-D

- SOL width increases with high density and power
- Detached divertor plasma broadens at high power
- Pedestal pressure does not inherently degrade for high density SOL and detached divertor operation

Density and input power scans provide a wide range of separatrix pressure

- LSN configuration
 - Modest triangularity, $\delta_L \sim 0.5$, $\delta_U \sim 0.2$
- Vary injected power by 4x
 - 3 MW, 5 MW and 13 MW
- Vary D₂ gas injection from natural H-mode density to divertor detachment, T_{e,div}~ 1eV
- Pressure gradient measurements:
 - Profiles of n_e and T_e from Thomson in last half of ELM phase
 - T_i profile from CER of CVI
- Edge MHD stability from:
 - Magnetic reconstruction (EFIT) with current and pressure constraints
 - Baloo calculation of infinite-n ideal ballooning stability

Separatrix pressure gradients examined by scanning power and density

- Separatrix pressure scan
 - Density scan to detachment onset
 - Power scan; 3-13 MW
 - High power required to support high SOL density

Midplane profiles collected

- Thomson data between ELMs fit with tanh function
- Separatrix location; T_{sep}~70-90
 eV from power balance
- T_i from CER CVI

For ITPA λ_q scaling MHD limit is reached at high density

- Magnetic equilibria reconstructed with measured pressure and edge bootstrap current model
- Baloo calculates 2D ideal MHD ballooning limit
 - Across dataset; $\alpha_{crit} \sim 2.2-2.7$

Separatrix pressure gradient increases with density until saturating at $n_{e,sep}/n_{GW} \ge 0.4$

- ∇p_{sep} (α_{sep}/α_{crit}) saturates
 vs. density at twice the
 MHD limit
- \(\nabla p_{sep}\) consistently above stability limit
 - Result not sensitive to SOL transport assumption
 - Potential stabilization due to FLR and flow shear effects

Normalized Separatrix Pressure Gradient ($abla p_{e,sep} + \nabla p_{i,sep}) / \nabla p_{crit}$

Electron pressure gradient increases linearly with density

- $\nabla p_{e,sep}$ increases linearly with $n_{e,sep}$ until $n_{e,sep}/n_{GW} \sim \geq 0.5$
- $abla p_{i,sep}$ inherently more uncertain due CVI CER challenges
 - Initial main ion CER analysis reduces T_{i,sep}, but increases VT_{i,sep}

Electron pressure gradient driven by both temperature and density profiles

n_e⊽T_e:

8

- Linear increase with n_{sep} indicates constant ∇T_e
- Little change in scaling with divertor detachment

• T_e∇n_e:

- Saturation with n_{sep} indicates broadening of SOL density
- T_{e,sep} insensitive to density and power in this analysis

Ion pressure gradient dominated by ∇n_i

n_i∇T_i

n_i∇T_i:

- n_i∇T_i:
- Low values due to high T_{i,sep} and low T_i gradient
- Main ion CER expected to decrease T_{i,sep} but increase ∇T_{i,sep}

- Large value due to high T_{i,sep} with n_i profile similar to n_e
- Large scatter in data set due to challenging CVI CER measurement

Low sensitivity of pressure gradient to analysis assumption of conduction dominated SOL heat flux

- Sensitivity of ∇p_{e,sep} to analysis assumption
 - Vary convected fraction of SOL heat flux by varying Mach # of parallel flow of SOL profiles
 - Convections shifts separatrix location to slightly lower $T_{\rm e}$
- Sensitivity of Vp_{e,sep} to separatrix location is not strong enough to qualitatively affect conclusions

• Midplane SOL λ_q obtained from Thomson profiles

- $\lambda_q \sim \frac{2}{7} \lambda_{T_e}$ (flux-limited Spitzer)
- $\lambda_q \sim 60-70\%$ of ITPA scaling
- No SOL broadening with density at low power
 - $\lambda_{q,SOL}$ constant vs. density up through divertor detachment
- SOL λ_q at detachment onset broadens with increasing power
 - $\lambda_{q,SOL}$ increases ~30% from low to high power

λ_{ne} increases more than λ_{Te} at high power and density

- SOL λ_{Te} scaling similar to $\lambda_{\text{q,SOL}}$

- $\lambda_q \sim \frac{2}{7} \lambda_{T_e}$ (flux-limited Spitzer)

SOL λ_{ne} 3x broader at high power

n_{e,sep} at detachment onset only
 2x higher for 5x higher power

At high power detached divertor broadens similar to $\lambda_{\text{ne,SOL}}$

During divertor detachment

- T_e ~1 eV at target and ~5 eV at midpoint for both low and high power
- Divertor plasma 2-3 x broader at high power, similar to midplane density
- Peak divertor density does not increase significantly with power
- Divertor power width, $\sim \lambda_{ne,div}$ correlated with $\lambda_{ne,SOL}$ rather than $\lambda_{Te,SOL}$

Pedestal degradation during detachment is evaluated with EPED

EPED based on known pedestal physics

- Dependence on collisionality (density)
- Plasma β_{pol} (input power)
- Other inputs; Shape, I_p, B_t, Z_{eff}, etc.
- Effect of detachment and SOL broadening on confinement not directly extrapolatable due to other physics
 - Internal MHD (NTMs), core profile peaking with collisionality, dependence of confinement on rotation, etc.

Pedestal can be maintained during detachment with high power

- Pedestal degrades ~20% below EPED expectation for low power detached conditions
 - High collisionality?
 - Narrow density pedestal due to edge fueling?
- Detached plasmas can maintain high pedestal at high power
 - Higher P_{LH} margin required at high collisionality?
- Pedestal degradation is not an inherent feature of a detached divertor or broadened SOL

Pedestal Pressure Normalized by EPED expectation

Summary and future work

Experimental observations

- SOL broadens, n_e more than T_e , at high power and density
- Divertor plasma also broadens similarly to the upstream SOL density
- Pedestal does not degrade below EPED predictions at high power

Implications

- Divertor detachment in future tokamaks may be possible at lower densities than implied by ITPA λ_q scaling
- Divertor test tokamaks may require similar field strengths to simulate reactor divertor conditions

• Future work

- Test SOL profiles with realistic stability models; BOUT++
- Examine ion pressure with main ion CER measurements

