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• Eich1 finds separatrix pressure gradient limit in JET and ASDEX-U
– Derive MHD limit for ITPA heat flux width scaling at nsep/nGW~0.5
– SOL broadens at high pressure gradient and/or collisionality

• Goal: Examine DIII-D data for similar trends and implications
– Vary power and density for scanning separatrix pressure and its gradient
– Correlate high separatrix gradients with SOL, divertor                                      

and pedestal behavior
• SOL broadening observed in DIII-D

– SOL width increases with high density 
and power

– Detached divertor plasma broadens 
at high power

– Pedestal pressure does not inherently 
degrade for high density SOL                                                                       
and detached divertor operation
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Recent analysis suggests MHD stability limits the density 
range of ITPA heat flux width scaling 

!"#$% = '()*+ ∼ 2.5

1Eich, NF 2018
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• LSN configuration
– Modest triangularity, dL~ 0.5, dU~ 0.2

• Vary injected power by 4x
– 3 MW, 5 MW and 13 MW

• Vary D2 gas injection from natural 
H-mode density to divertor 
detachment, Te,div~ 1eV

• Pressure gradient measurements:
– Profiles of ne and Te from Thomson 

in last half of ELM phase
– Ti profile from CER of CVI

• Edge MHD stability from:
– Magnetic reconstruction (EFIT) with 

current and pressure constraints
– Baloo calculation of infinite-n ideal 

ballooning stability

Density and input power scans provide a wide range of 
separatrix pressure
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• Midplane profiles collected
– Thomson data between ELMs fit 

with tanh function
– Separatrix location; Tsep~70-90 

eV from power balance
– Ti from CER CVI

Separatrix pressure gradients examined by scanning 
power and density 

ne Te

Ti

Pinj=13 MW; Detached Divertor Onset
• Separatrix pressure 

scan
– Density scan to 

detachment onset
– Power scan; 3-13 MW
– High power required 

to support high SOL 
density
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• Magnetic equilibria reconstructed with measured pressure and 
edge bootstrap current model

• Baloo calculates 2D ideal MHD ballooning limit
– Across dataset; acrit ~ 2.2-2.7

For ITPA lq scaling MHD limit is reached at high density

Normalized Pressure Gradient
!"#$ = &'()*

• ∇psep increases with density
– Fixed lTe, lne(ITPA scaling)
– Little variation in Te,sep, 70-90 eV, 
,-,/-0 ∝ '∥ ⁄( 4

– High power required to support high 
SOL density at detachment onset, 
5/-0 ∝ '∥ ⁄6 4

MHD stability limit from BALOO
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• ∇psep (asep/acrit) saturates 
vs. density at twice the 
MHD limit

• ∇psep consistently above 
stability limit
– Result not sensitive to SOL 

transport assumption
– Potential stabilization due 

to FLR and flow shear 
effects 

Separatrix pressure gradient increases with density
until saturating at ne,sep/nGW ≥ 0.4

Normalized Separatrix Pressure Gradient
(∇pe,sep + ∇pi,sep)/ ∇pcrit
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• ∇pe,sep increases linearly with ne,sep until ne,sep/nGW ~ ≥ 0.5
• ∇pi,sep inherently more uncertain due CVI CER challenges

– Initial main ion CER analysis reduces Ti,sep, but increases ∇Ti,sep

Electron pressure gradient increases linearly with density

Electron Pressure Gradient; ∇pe,sep Ion Pressure Gradient; ∇pi,sep
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• ne∇Te: 
– Linear increase with nsep

indicates constant ∇Te

– Little change in scaling with 
divertor detachment

Electron pressure gradient driven by both temperature 
and density profiles

ne∇Te Te∇ne

• Te∇ne: 
– Saturation with nsep indicates 

broadening of SOL density
– Te,sep insensitive to density and 

power in this analysis
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• ni∇Ti: 
– Low values due to high Ti,sep and 

low Ti gradient
– Main ion CER expected to 

decrease Ti,sep but increase ∇Ti,sep

Ion pressure gradient dominated by ∇ni

ni∇Ti Ti∇ni

• ni∇Ti: 
– Large value due to high Ti,sep with ni

profile similar to ne

– Large scatter in data set due to 
challenging CVI CER measurement
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• Sensitivity of ∇pe,sep to 
analysis assumption
– Vary convected fraction of 

SOL heat flux by varying 
Mach # of parallel flow of 
SOL profiles

– Convections shifts separatrix 
location to slightly lower Te

• Sensitivity of ∇pe,sep to 
separatrix location is not 
strong enough to 
qualitatively affect 
conclusions

Low sensitivity of pressure gradient to analysis 
assumption of conduction dominated SOL heat flux
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• Midplane SOL lq obtained from 
Thomson profiles
– !"~ $

% !&' (flux-limited Spitzer)

– !" ~ 60−70% of ITPA scaling
• No SOL broadening  with 

density at low power
– lq,SOL constant vs. density up 

through divertor detachment
• SOL lq at detachment onset 

broadens with increasing power
– lq,SOL increases ~30% from low 

to high power

SOL heat flux width broadens marginally at high power

lq,SOL

Midplane SOL Heat Flux Width
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• SOL lTe scaling similar to lq,SOL

– !"~ $
% !&' (flux-limited Spitzer)

lne increases more than lTe at high power and density

lTe lne

• SOL lne 3x broader at high power
– ne,sep at detachment onset  only 

2x higher for 5x higher power
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• During divertor detachment
– Te ~1 eV at target and ~5 eV at midpoint for both low and high power
– Divertor plasma 2-3 x broader at high power, similar to midplane density
– Peak divertor density does not increase significantly with power
– Divertor power width, ~lne,div correlated with lne,SOL rather than lTe,SOL

At high power detached divertor broadens similar to lne,SOL
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• EPED based on known pedestal 
physics
– Dependence on collisionality (density)
– Plasma bpol (input power)
– Other inputs; Shape, Ip, Bt, Zeff, etc.

• Effect of detachment and SOL 
broadening on confinement not 
directly extrapolatable due to other 
physics
– Internal MHD (NTMs), core profile 

peaking with collisionality, 
dependence of confinement on 
rotation, etc.

Pedestal degradation during detachment is evaluated 
with EPED

Detached Divertor Discharges
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• Pedestal degrades ~20%  
below EPED expectation for 
low power detached 
conditions
– High collisionality? 
– Narrow density pedestal due 

to edge fueling?
• Detached plasmas can 

maintain high pedestal at 
high power
– Higher PLH margin required at 

high collisionality?
• Pedestal degradation is not 

an inherent feature of a 
detached divertor or 
broadened SOL

Pedestal can be maintained during detachment with 
high power
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• Experimental observations
– SOL broadens, ne more than Te, at high power and density
– Divertor plasma also broadens similarly to the upstream SOL density
– Pedestal does not degrade below EPED predictions at high power

• Implications
– Divertor detachment in future tokamaks may be possible at lower 

densities than implied by ITPA lq scaling
– Divertor test tokamaks may require similar field strengths to simulate 

reactor divertor conditions
• Future work

– Test SOL profiles with realistic stability models; BOUT++
– Examine ion pressure with main ion CER measurements

Summary and future work


