Off-Axis Neutral Beam Current Drive for Advanced Tokamak

J.M. Park¹, C.C. Petty², M.A. Van Zeeland²,
B. Grierson³, W.W. Heidbrink⁴, C.C. Collins²,
B. Victor⁵, K.E. Thome², C.H. Holcomb⁵, and K. Kim¹

¹Oak Ridge National Laboratory ²General Atomics ³Princeton Plasma Physics Laboratory ⁴University of California at Irvine ⁵Lawrence Livermore National Laboratory

Presented at the 28th IAEA Fusion Energy Conference Nice, France

May 10 — 15, 2021

DIII-D Aims at Power-Plant Relevant Steady-State β_N >4 With Broad Current and Pressure Profiles

- Off-axis CD plays an essential role in achieving high β_{N} , high f_{BS} operation by broadening the current and pressure profiles to improve confinement and stability
- IPS-FASTRAN theory-based integrated modeling motivated the upgrade of DIII-D neutral beam H/CD

DIII-D has Completed a Major Upgrade to the Neutral Beams that Increase Off-Axis Heating and Current Drive

Vertically Steerable Off-Axis Neutral Beam

 New toroidally steerable Co-Counter Off-Axis Neutral Beam

See B.A. Grierson poster [P1 Posters 1]

NBCD is Obtained Quantitatively from Evolution of the Equilibria

- Kinetic equilibria reconstruction using magnetic pitch angles from MSE \Rightarrow J_{Tot}
- Internal loop voltage from time series of equilibria reconstruction $\Rightarrow J_{OH} = \sigma_{neo} \frac{\partial \psi}{\partial t}$
- Bootstrap current from neoclassical theory $\Rightarrow J_{BS}$

$$\int_{NB} = J_{Tot} - J_{OH} - J_{BS}$$

DIII-D Experiments Confirm that New CCOANB Drives Current as Predicted

CCOANB

On-Axis NBCD

- Reasonably good agreement with classical modeling
 - Monte-Carlo beam ion slowing down code NUBEAM
 - Without anomalous fast ion transport

Off-axis NBCD is Sensitive to Beam Injection Alignment to Local Magnetic Field

More Tangential

More Perpendicular

 Differential NBCD measurement reduces model dependencies and systematic uncertainties

- Compare two discharges "Left" (more tangent) and "Right"

(more perpendicular) off-axis NBCD

Measured Off-axis NBCD Efficiency Increases with Injection Power

- An inward shift of the peak NBCD location for high power off-axis NBCD (~7 MW) in presence of
 - Estimated beam ion diffusion Db ~ 0.3 m²/s to match the net driven

- current and stored energy
 - Related to modest n = 2, 3 MHD instabilities

Increased Off-axis NBCD Power Leads to Very Broad Pressure Profiles as Predicted

- Elevated q_{min} target discharge
- Vertically-steerable OANB + on-axis NB
- Dominant off-axis beams (Vertically-steerable + CCOANB) except diagnostic on-axis NB

IPS-FASTRAN Reproduces Pressure Profile Broadening Reasonably Well

Solve all transport channels

- Particle, energy, momentum, current
- From core to separatrix
 - TGLF + EPED
- Self-consistent H/CD
 - NUBEAM, TORAY-GA
- Theory-based, limited free parameters

Predict-First Approach Has Been Tested for High q_{min} Scenario with Off-axis NBCD

FASTRAN Predict-FIRST

TGLF+EPED+NUBEAM+TORAY+EFIT+DCON

 IPS-FASTRAN simulations under a given power constraint for the dedicated Predict-First experiment

$$-P_{ECCD} = 1.5 MW$$

 $- P_{OANB} = 7 MW$

- Multi-dimensional parameter scan searching for the highest stable β_N at $f_{NI} = 1$
 - I_p, B_T, pedestal density, ECCD aiming, NB power mix
- Increasing on-axis NB power on top of all available off-axis NB power until the high qmin discharge hits one of the MHD stability limits, confinement limit, or reaches to $f_{NI} = 1$

Predict-First Approach Has Been Tested for High q_{min} Scenario with Off-axis NBCD

FASTRAN Predict-FIRST

- Experiment achieved $\beta_N \approx 3.9$, $f_{NI} \approx 0.92$ with a sufficient margin to the n=1 with-wall ideal MHD β_N limit
- n=3 TM later in high β_N phase prevented higher β_N operation

Predict-First Approach Has Been Tested for High q_{min} Scenario with Increased Off-axis NBCD

IPS-FASTRAN Prediction for CAT Shows a Significant Improvement of Energy Confinement with a Broad Current Profile

- Confinement is sensitive to J(ρ)
 - Broad J with a weak
 negative magnetic shear,
 q_{min} > 2
 - Monotonic q with $q_0 \approx 1$
- H/CD requirement
 - Broad off-axis CD to fill in $\Delta J = J(\rho) - J_{BS}(\rho)$

CAT Fusion Pilot Plan: Buttery, Nucl. Fusion 61 046028 (2021)

Off-axis NBCD Aligns Well with High f_{BS}>0.8 Operation, Maintaining a Broad Current Profile with q_{min}>2

- Negative beam ion
 - E_b = 750 keV
 - 56 cm x 120 cm beam size
 - Tangent radius $R_T = 4 m$
- Vertical shift for off-axis NBCD
 - Direction of vertical shift (h_{NB}) was determined for better alignment of NB injection to local B
- Excellent off-axis NBCD efficiency
 - NBCD does not lose CD efficiency at a larger radius

IPS-FASTRAN Predicts A Promising Path To Net Electricity Generation with Off-axis NBCD as a Main H/CD Source

- 200 MW_e net electricity solution
 - -R = 4 m, R/a = 3, B = 7 T
 - $-\beta_{\rm N} = 3.6$
 - $f_{NI} = 1, f_{BS} = 0.9$
 - $n_{e,ped}/n_{GW} = 1$

Off-axis NBCD

- $P_{NB} = 24 MW$
- Broad CD with peak at ρ = 0.6

Helicon CD

- P_{HC} = 12 MW @ 1.2 GHz
- Localized CD at ρ = 0.6

SUMMARY

- Off-axis NBCD physics has been validated with increased offaxis injection power up to ~7 MW with the newly available CCOANB capability.
 - The measured NBCD from CCOANB agrees reasonably well with the classical model NUBEAM for MHD quiescent plasmas.
 - An inward shift of NBCD profile was observed in the presence of low-n resistive instabilities at high injection power, resulting in reduced NBCD compared with the classical prediction.
 - The measured NBCD efficiency increases with injection power even with the anomalous beam ion transport.

SUMMARY

- IPS-FASTRAN predict-first approach has been tested for high q_{min} scenario with off-axis NBCD.
 - Dedicated predict-first experiment obtained a discharge with $f_{NI} > 0.9$, $\beta_N \sim 3.9$ at $q_{95} = 6.9$, which is close to the prediction under the constraint of available ECCD power.
 - Additional modeling needs have been identified, especially for the on-set of low-n resistive MHD instabilities and importance of a repeated cycle of scenario design, experimental implementation, and modeling validation.
- IPS-FASTRAN predicts a promising path to net electricity generation for the CAT Fusion Pilot Plant with off-axis NBCD as a main H/CD source

