Off-Axis Neutral Beam Current Drive for Advanced Tokamak

1Oak Ridge National Laboratory
2General Atomics
3Princeton Plasma Physics Laboratory
4University of California at Irvine
5Lawrence Livermore National Laboratory

Presented at the
28th IAEA Fusion Energy Conference
Nice, France

May 10 — 15, 2021
DIII-D Aims at Power-Plant Relevant Steady-State $\beta_N > 4$ With Broad Current and Pressure Profiles

- Off-axis CD plays an essential role in achieving high β_N, high f_{BS} operation by broadening the current and pressure profiles to improve confinement and stability.
- IPS-FASTRAN theory-based integrated modeling motivated the upgrade of DIII-D neutral beam H/CD.

<table>
<thead>
<tr>
<th>On-Axis NBI (MW)</th>
<th>Off-Axis NBI (MW)</th>
<th>ECH (MW)</th>
<th>Transport limit β_N</th>
<th>Stability Limit β_N</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.8</td>
<td>3.3</td>
<td>3.2</td>
<td>3.5 ($q_{min}=1.5$, $f_{NI}=0.75$)</td>
<td>3.7</td>
</tr>
<tr>
<td>9.5</td>
<td>10.7</td>
<td>9</td>
<td>5.1</td>
<td>4.9 ($q_{min}>2$, $f_{NI}=1$)</td>
</tr>
</tbody>
</table>
DIII-D has Completed a Major Upgrade to the Neutral Beams that Increase Off-Axis Heating and Current Drive

- Vertically Steerable Off-Axis Neutral Beam
- New toroidally steerable Co-Counter Off-Axis Neutral Beam

See B.A. Grierson poster [P1 Posters 1]
NBCD is Obtained Quantitatively from Evolution of the Equilibria

- Kinetic equilibria reconstruction using magnetic pitch angles from MSE $\Rightarrow J_{\text{Tot}}$
- Internal loop voltage from time series of equilibria reconstruction $\Rightarrow J_{\text{OH}} = \sigma_{\text{neo}} \frac{\partial \psi}{\partial t}$
- Bootstrap current from neoclassical theory $\Rightarrow J_{\text{BS}}$

$J_{\text{NB}} = J_{\text{Tot}} - J_{\text{OH}} - J_{\text{BS}}$
Reasonably good agreement with classical modeling
- Monte-Carlo beam ion slowing down code NUBEAM
- Without anomalous fast ion transport
Off-axis NBCD is Sensitive to Beam Injection Alignment to Local Magnetic Field

More Tangential

More Perpendicular

Differential NBCD measurement reduces model dependencies and systematic uncertainties
- Compare two discharges “Left” (more tangent) and “Right” (more perpendicular) off-axis NBCD
An inward shift of the peak NBCD location for high power off-axis NBCD (~7 MW) in presence of

- Estimated beam ion diffusion $D_b \sim 0.3 \text{ m}^2/\text{s}$ to match the net driven current and stored energy
- Related to modest $n = 2, 3$ MHD instabilities
Increased Off-axis NBCD Power Leads to Very Broad Pressure Profiles as Predicted

- Elevated q_{min} target discharge
- Vertically-steerable OANB + on-axis NB
- Dominant off-axis beams (Vertically-steerable + CCOANB) except diagnostic on-axis NB
IPS-FASTRAN Reproduces Pressure Profile Broadening Reasonably Well

- Solve all transport channels
 - Particle, energy, momentum, current
- From core to separatrix
 - TGLF + EPED
- Self-consistent H/CD
 - NUBEAM, TORAY-GA
- Theory-based, limited free parameters
 - $n_{e^{ped}}$, Z_{eff}, Ω_{ped}, D_b

Diagram:
- IPS-FASTRAN
- Experiment
- 180386 183087
- Pedestal Top

Axes:
- Pressure (kPa)
- ρ

Scale:
- 0.0 to 1.0
Predict-First Approach Has Been Tested for High q_{min} Scenario with Off-axis NBCD

- IPS-FASTRAN simulations under a given power constraint for the dedicated Predict-First experiment
 - $P_{\text{ECCD}} = 1.5 \text{ MW}$
 - $P_{\text{OANB}} = 7 \text{ MW}$

- Multi-dimensional parameter scan searching for the highest stable β_N at $f_{N_{NI}} = 1$
 - I_p, B_T, pedestal density, ECCD aiming, NB power mix

- Increasing on-axis NB power on top of all available off-axis NB power until the high q_{min} discharge hits one of the MHD stability limits, confinement limit, or reaches to $f_{N_{NI}} = 1$
Predict-First Approach Has Been Tested for High q_{min} Scenario with Off-axis NBCD

FASTRAN Predict-FIRST

TGLF+EPED+NUBEAM+TORAY+EFIT+DCON

Transport β_N for $f_{NI}=1$

- Ideal wall β_N Stability Limit

- Experiment achieved $\beta_N \approx 3.9$, $f_{NI} \approx 0.92$ with a sufficient margin to the $n=1$ with-wall ideal MHD β_N limit
- $n=3$ TM later in high β_N phase prevented higher β_N operation
Predict-First Approach Has Been Tested for High q_{min}
Scenario with Increased Off-axis NBCD

- Theory-based modeling
 - TGLF + EPED+ NUBEAM + TORAY + EFIT + DCON

On-axis NB power scan at the maximum off-axis NB power to closely mimic FASTRAN Predict-First

IPS-FASTRAN reproduces experimental profiles with 2nd off-axis beams

Repeated Cycle
IPS-FASTRAN Prediction for CAT Shows a Significant Improvement of Energy Confinement with a Broad Current Profile

- Confinement is sensitive to $J(\rho)$
 - Broad J with a weak negative magnetic shear, $q_{\text{min}} > 2$
 - Monotonic q with $q_0 \approx 1$

- H/CD requirement
 - Broad off-axis CD to fill in $\Delta J = J(\rho) - J_{BS}(\rho)$
Off-axis NBCD Aligns Well with High $f_{BS}>0.8$ Operation, Maintaining a Broad Current Profile with $q_{min}>2$

- **Negative beam ion**
 - $E_b = 750$ keV
 - 56 cm x 120 cm beam size
 - Tangent radius $R_T = 4$ m

- **Vertical shift for off-axis NBCD**
 - Direction of vertical shift (h_{NB}) was determined for better alignment of NB injection to local B

- **Excellent off-axis NBCD efficiency**
 - NBCD does not lose CD efficiency at a larger radius
IPS-FASTRAN Predicts A Promising Path To Net Electricity Generation with Off-axis NBCD as a Main H/CD Source

- **200 MW\textsubscript{e} net electricity solution**
 - $R = 4\ \text{m}$, $R/a = 3$, $B = 7\ \text{T}$
 - $\beta_N = 3.6$
 - $f_{NI} = 1$, $f_{BS} = 0.9$
 - $n_{e,ped}/n_{GW} = 1$
- **Off-axis NBCD**
 - $P_{NB} = 24\ \text{MW}$
 - Broad CD with peak at $\rho = 0.6$
- **Helicon CD**
 - $P_{HC} = 12\ \text{MW} @ 1.2\ \text{GHz}$
 - Localized CD at $\rho = 0.6$
• Off-axis NBCD physics has been validated with increased off-axis injection power up to ~7 MW with the newly available CCOANB capability.
 – The measured NBCD from CCOANB agrees reasonably well with the classical model NUBEAM for MHD quiescent plasmas.
 – An inward shift of NBCD profile was observed in the presence of low-n resistive instabilities at high injection power, resulting in reduced NBCD compared with the classical prediction.
 – The measured NBCD efficiency increases with injection power even with the anomalous beam ion transport.
SUMMARY

- **IPS-FASTRAN** predict-first approach has been tested for high q_{min} scenario with off-axis NBCD.
 - Dedicated predict-first experiment obtained a discharge with $f_{\text{Ni}} > 0.9$, $\beta_N \sim 3.9$ at $q_{95} = 6.9$, which is close to the prediction under the constraint of available ECCD power.
 - Additional modeling needs have been identified, especially for the on-set of low-n resistive MHD instabilities and importance of a repeated cycle of scenario design, experimental implementation, and modeling validation.

- **IPS-FASTRAN** predicts a promising path to net electricity generation for the CAT Fusion Pilot Plant with off-axis NBCD as a main H/CD source.