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Alfvén Eigenmodes in the gmin>2, Steady-State Scenario
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This Talk: Steady-State Scenario Advanced Through

Improved AE Control and Fast-ion Transport Modeling

Fast-ion confinement

(neutron ratio) improved by ~25% Accessed new regimes with 15% higher py
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AEs Can Cause Performance-Degrading Transport

in q,n>2, Reverse Shear Steady-State Scenarios

* ITER has goal to reach Q=5, q¢5>5, SS scenario

* Reverse shear, g, > 2 scenarios are
candidates for fully non-inductive

(steady state) tokamak operation
— Good for high Bylimit, elevated confinement,
and avoidance of low-order tearing modes
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AEs Can Cause Performance-Degrading Transport

in q,n>2, Reverse Shear Steady-State Scenarios

* ITER has goal to reach Q=5, qy5>5, SS scenario Example DIII-D gin>2 SS Scenario
shot #176042 CO2 Interferometer  log,,(P"?)

* Reverse shear, g, > 2 scenarios are
candidates for fully non-inductive 250

(steady state) tokamak operation 560 —
— Good for high Bylimit, elevated confinement, N -4.0
and avoidance of low-order tearing modes £ ™°

* In DIII-D, relatively high beam power drives AEs
— Observe lower global confinement at
higher gpin. limits achievable By
[Holcomb, PoP 22 (2015)], [Heidbrink, PPCF 56 (2014)]

B classical prediction
15E (TRANSP)
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neutrons are volumetric proxy for
fast-ion confinement
—>deficit due to AE’s transporting fast ions
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AEs Can Cause Performance-Degrading Transport

in q,n>2, Reverse Shear Steady-State Scenarios

ITER has goal to reach Q=5 , q45>5, SS scenario Example DIII-D gin>2 SS Scenario
shot #176042 CO2 Interferometer  log,,(P"?)

Reverse shear, q,,, > 2 scenarios are
candidates for fully non-inductive 250
(steady state) tokamak operation

200
— Good for high Bylimit, elevated confinement, 0
and avoidance of low-order tearing modes < .
100
* In DIII-D, relatively high beam power drives AEs .
— Observe lower global confinement at

higher gpin. limits achievable By
[Holcomb, PoP 22 (2015)], [Heidbrink, PPCF 56 (2014)]

B classical prediction
15E (TRANSP)

Multiple AEs cause critical gradient transport
— Fast-ion profiles are sfiff
— Any effort to increase the fast-ion gradient

results in more fransport, losses :
neutrons are volumetric proxy for

[Collins PRL 116 (2016)] [Heidbrink NF 53 (2013)] fast-ion confinement
[Todo, New J. Phys 18 (2016)]
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—>deficit due to AE’s transporting fast ions
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AEs Can Cause Performance-Degrading Transport

in q,n>2, Reverse Shear Steady-State Scenarios

ITER has goal to reach Q=5 , q¢5>5, SS scenario

Reverse shear, q,,, > 2 scenarios are
candidates for fully non-inductive

(steady state) tokamak operation

— Good for high Bylimit, elevated confinement,
and avoidance of low-order tearing modes

In DIII-D, relatively high beam power drives AEs

— Observe lower global confinement at
higher gpin. limits achievable By
[Holcomb, PoP 22 (2015)], [Heidbrink, PPCF 56 (2014)]

Multiple AEs cause critical gradient transport
— Fast-ion profiles are sfiff

— Any effort to increase the fast-ion gradient
results in more fransport, losses

[Collins PRL 116 (2016)] [Heidbrink NF 53 (2013)]
[Todo, New J. Phys 18 (2016)]

Important questions:

Example DII-D gyin>2 SS Scenario

shot #176042 CO2 Interferometer  log,,(P"?)
density fluctuations 3.0

h Jannie 35
(it AR L T
difnt b e

classical prediction
(TRANSP)

measured
Neutron rate

0

1000 2000 3000 \_4000 5000
Time (ms)

neutrons are volumetric proxy for
fast-ion confinement
—>deficit due to AE’s transporting fast ions

DIn-p How well do AE control actuators work in varied parameters?

How can we effectively predict EP profiles/losses to optimize scenarios?



Goal: Validate Models in Order to Calculate EP Transport

& Optimize Scenarios For Future Fusion Reactors

 TGLF-EP+Alpha is the simplest, fastest critical gradient EP transport model

-provides fully physics-based calculation of transported EP profile and corresponding EP diffusion
-avoids detailed nonlinear calculations of saturated mode amplitudes

Input Profiles
1 Calculate beam
B deposition, losses
fasg (TRANSP/NUBEAM)
1
Radius T
‘1' /" Calculate Critical Gradient /" Calculate EP Diffusion
(Adjust 0p,/or until y 30) (based on given source)
1 Relaxed 2 Diffusion
[ Calculate AEs, y ] e B NN\ A Profile — (10° cméfs)
fast
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Goal: Validate Models in Order to Calculate EP Transport

& Optimize Scenarios For Future Fusion Reactors

 TGLF-EP+Alpha is the simplest, fastest critical gradient EP transport model

-provides fully physics-based calculation of transported EP profile and corresponding EP diffusion
-avoids detailed nonlinear calculations of saturated mode amplitudes

Input Profiles
1 Future directions: Calculate beam
B incorporate into deposition, losses
fast <- --------- . A . < --------- (TRANSP/NUBEAM)
predictive modeling

‘1' /" Calculate Critical Gradient /" Calculate EP Diffusion
(Adjust 0p,/or until y 30) (based on given source)
1 Relaxed 2 Diffusi
[ Calculate AEs, y ] e B NG Profile —_— (1'o4lé§'z(/)s?
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Goal: Validate Models in Order to Calculate EP Transport

& Optimize Scenarios For Future Fusion Reactors

 TGLF-EP+Alpha is the simplest, fastest critical gradient EP transport model

-provides fully physics-based calculation of transported EP profile and corresponding EP diffusion
-avoids detailed nonlinear calculations of saturated mode amplitudes - good for scoping

Input Profiles
1 Future directions: Calculate beam
B P incorporate info S depositon, losses
predictive modeling

‘1' /" Calculate Critical Gradient /" Calculate EP Diffusion
(Adjust 0p,/or until y 30) (based on given source)
1 Relaxed 2 Diffusi
[ Calculate AEs, y ] —_ N Profile —_ (1'04%2'2(/)3?
B fast /
K ° Radius /

TGLF-EP predicts fast-ion =
redistribution by AEs in §
ITER baseline scenario o
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* DIlI-D experiments with AE control in SS scenario

 Broad fast-ion profiles reduce core EP transport
— Further improvement by tuning g-profile with ECCD

* Progress with TGLF-EP+Alpha model validation

.
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DIlI-D’'s Beam Upgrade Enabled Improved Fast-lon

Confinement While Maintaining Scenario

* In 2018 experiments with 2 off-axis NBI sources, Neutron Ratio (Goal=1)
AEs were reduced and neutron ratio increased by 1.0F
decreasing Vg, (Using higher plasma density)

— However, By decreased (By 2 1.5)
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— g-profile had less shear, confinement decreased b o o
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DIlI-D’'s Beam Upgrade Enabled Improved Fast-lon

Confinement While Maintaining Scenario

* In 2018 experiments with 2 off-axis NBI sources, Neutron Ratio (Goal=1)
AEs were reduced and nevtron ratio increased by 1.0¢
decreasing Vg, (Using higher plasma density) 3

— However, By decreased (By 2 1.5)
— g-profile had less shear, confinement decreased

(triangles)
2019 AE control experiments
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* Recent experiments using 4 off-axis NBI further
decreased VB, improved neutron ratio ~25%
while maintaining scenario and py 0.4
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DIlI-D’s Beam Upgrade Enabled Improved Fast-lon

Confinement While Maintaining Scenario
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In a database survey comparing all
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beam power in 2019 enabled
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Neuiron Ratio Improved with AE Control Techniques

 AEs can be suppressed by

1.0

— Manipulating equilibrium profiles

— Increasing the mode damping
— Decreasing the fast-ion drive

* In practice, actuators affect
multiple mechanisms
— Manipulating NBI heating can

change beam profile, g profile,

plasma pressure
— ECCD can affect g profile,

0.8
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% off-axis NBI
shot | (ramp/flattop) Control Method
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36/63 spread beam voltage
180623 /1/72 off-axis NBI
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Control Case: Representative High-q,,,;, Plasma

Was Prepared to Test Various AE Control Methods
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Control Case: Representative High-q,,,;, Plasma

Was Prepared to Test Various AE Control Methods
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i

e Established sustained reverse shear
(90> Amin) With qmin>2 using early heating
— Preprogrammed beam timing was same 10
for every shot (no By feedback)

— Off-axis ECCD helped broaden current
profile and prevent tearing modes

* First step: Early heating timing was |
varied to improve q-profile evolution & 20
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Early Heating Increases pgyy, . Reducing EP Transport

CO2 Interferometer

* Early heating drives off- 150
axis inductive current and
10.5
larger pgmin Safety Factor Profile 100
— Plasma and beam 9.0 1=2000 ms logyo(P"?)
pressure profiles similar 2.5
50 &
neutron ratio improved lower g, larger pgmin 35
6.0
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Early Heating Increases pgyy, . Reducing EP Transport
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Early Heating Increases pgyy, . Reducing EP Transport

176050 —

CO2 Interferometer

* Early heating drives off- 140 Eana
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Experiment: Replace 4 MW of On-Axis with Off-Axis Beams in Flattop

Result: Little Difference in AE Activity, Neuiron Ratio

CO2 Interferometer

7:5
Safety Factor Profile

* Plasma profiles (g, Te, ne) t=3000 ms
nearly identical

f (kHz)

4.5
e little improvement
because little change in 30
VBrast At pgmin Where modes
are driven 1.5
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Experiment: Swap in Off-Axis Beams for Whole Shot

Result: Reduced AE Activity, Neutron Ratio Improved 10% in Flattop

— thermal profiles similar

e 2>Improvement due to
reducing AE drive by
moving pgmin fowards
reduced Vi,

21 D1H-D
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TGLF-EP Model and FIDA Measurements Show Broader

Beam Pressure Profile Reduced Core Transport of Fast lons

Beam Density
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#180620 (flattop OANB)
#180624 (whole shot OANB)
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g gD classical
~ \§§ &
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» \
\\\
Ve
2 DX
Sal
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TGLF-EP+ALPHA *

t..~
0.0 0.2 0.4 0.6 0.8 1.0
Normalized Minor Radius (p)

» AEs cause fast-ion profile
to relax to similar gradient
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TGLF-EP Model and FIDA Measurements Show Broader

Beam Pressure Profile Reduced Core Transport of Fast lons

Beam Density Beam Density Ratio (Model)
8 #180619 (reference)
#180620 (flattop OANB) a
__6h #180624 (whole shot OANB) _
£ |7 classical i
2 - ]
oof Theory/Classical
0 o 0 0' (TGLF-EP+ALPHA)
00 02 04 06 08 10 00 02 04 06 08 10
Normalized Minor Radius (p) Normalized Minor Radius (p)
« AEs cause fast-ion profile * Model profile is
to relax to similar gradient closer to classical
in core (less transport)
in off-axis NBI cases
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TGLF-EP Model and FIDA Measurements Show Broader

Beam Pressure Profile Reduced Core Transport of Fast lons

Beam Density

#180619 (reference)
#180620 (flattop OANB)
#180624 (whole shot OANB)

0.8
Normalized Minor Radius (p)

0.0 0.2 04 0.6 1.0

» AEs cause fast-ion profile
to relax to similar gradient

24 DIII-D
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Beam Density Ratio (Model)

oof Theory/Classical
ool (TGLF-EP+ALPHA)
' 02 04 06 08 10

Normalized Minor Radius (p)

» Model profile is
closer to classical
in core (less transport)
in off-axis NBI cases
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Normalized Minor Radius (p)

 FIDA measurement
also indicates less
core transport in
off-axis NBI cases



Experiment: OANB + Core ECCD (but q,,;,>2 in Current Ramp Only)

Result: Reduced AEs, Neutron Ratio Improved ~35%

10

Safety Factor Profile #180619 (reference)
. 8 t=2000 ms
e q profile: increased shear,
lower qmin, Pgmin inward s g
\ : Iog10(P1/2)
4 -2.5
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2
6.0 35
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§ 4.5 (classical) -4.0
=
2 -4.5
a 3.0
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s} T
& 15 :;f,
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0.5
0.4 B fast/ Btot
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02| =
2
(0]
z
0.1
0.0 . , . 1
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Experiment: OANB + Core ECCD (but q,,;,>2 in Current Ramp Only)

Result: Reduced AEs, Neutron Ratio Improved ~35%

e q profile: increased shear,

lower dmin, Pgmin inward \
4

e >Improvement in neutron
ratio may be due to:

— lower g

— moving pgmin fowards
region of teduced VBiast

— moving pymin fowards region

of reduced fast ion fraction — 04|

24 DII-D
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AE-Induced Fast-lon Diffusion Calculated by

TGLF-EP+Alpha is Within 12% of Measurement

) Measured AE Amplitude (ECE)
5

TGLF-EP+ALPHA is used to calculate EP diffusion (radial, time dep.)

)

Time (s)

Wl 180625

z , 0.5
0.0 0.2 0.4 0.6 0.8 1.0 0.0
Normalized Minor Radius

0.2 0.4 0.6
Normalized Minor Radius

0.8
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AE-Induced Fast-lon Diffusion Calculated by

TGLF-EP+Alpha is Within 12% of Measurement

 TGLF-EP+ALPHA is used to calculate EP diffusion (radial, time dep.)
Measured AE Amplitude (ECE) . Model ]Diffusiclm (TGlrF,E,P*A,‘L,PHA)

2.5 .
single
>SATelTe
20 o 20
) K2
o) o)
= 0.02 £

Wl 180625 0.5 #180625

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Normalized Minor Radius Normalized Minor Radius

« Diffusion is used in TRANSP to calculate neutron rate
Neutron Rate

10—~ T T _
 #180625 TRANSP 1+ TGLF-EP model
08F (classical) i overpredicts by 10%
% 0.6 or
2 depending on freatment of free
x 0.4 parameter (basis function width)
) (sngle) (muty 1 = TRANSP (classical) with no
0-%(')0. - '10'06; - '15'100 —io5 2500 transport overpredicts by 50%
MLL:Q Time (ms)
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Next Steps: Incorporate EP Transport Models

Into Integrated Modeling

 Questions to answer in determining how to achieve S$S:
— Whatis the optimal g profile?

— How much do EP instabilities affect performance,
H&CD efficiency?

— How to create the scenario?

29 DII-D
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Next Steps: Incorporate EP Transport Models

Into Integrated Modeling

 Questions to answer in determining how to achieve S$S:

— Whatis the optimal g profile? )

— How much do EP instabilities affect performance, Need
H&CD efficiency? — integrated

— How to create the scenario? modeling!
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Next Steps: Incorporate EP Transport Models

Into Integrated Modeling

 Questions to answer in determining how to achieve S$S:

—_

— What is the optimal g profile?

— How much do EP instabilities affect performance, Need
H&CD efficiency? — integrated

— How to create the scenario? modeling!

—_

Sensitivity of infegrated modeling predictions to fast-ion transport
20

P (MW)
18 "

NBI Power Required 16
to Reach By ~4.6

[Park PoP 25 012506 (2018)]
14

12

(b)
10 | | |
00 03 06 09 12
D, (m?/s)
31 DIH-D Assumed Anomalous Fast-lon Diffusion
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Summary

 Broadened EP profile enables better control of AEs in
steady-state scenarios
— Key factor is moving pgmin  towards region of reduced Vg,
— Neutron ratio improved by ~25% in flattop

— Accessed new regimes with 15% higher By Neutron Rate

10 : Heoe2s TIR,;\I\IISI'D llllll ]
0.8 (classical) e
e TGLF-EP+ALPHA critical gradient model 7 o5}
reproduces EP transport trends T 04} o
- Model-based diffusion mafches 0.2 jNMEE" ) EEp L ALPHA Model
measured neutron rate within 12% ool  (single) (mult) _
500 1000 1500 2000 2500
Time (ms)

e This work provides a basis for understanding how to avoid AE-
induced EP fransport in ITER and future advanced tokamak scenarios.
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