Improving Fast-Ion Confinement and Performance by Reducing Alfvén Eigenmodes in the qmin>2, Steady-State Scenario

Cami Collins¹

C.T. Holcomb², M.A. Van Zeeland³, E.M. Bass⁴, & the DIII-D Team

¹Oak Ridge National Laboratory
²Lawrence Livermore National Laboratory
³General Atomics
⁴University of California-San Diego

28th IAEA Fusion Energy Conference May 15, 2021

This Talk: Steady-State Scenario Advanced Through Improved AE Control and Fast-ion Transport Modeling

Fast-ion confinement (neutron ratio) improved by ~25%

– Key factor is moving ρ_{qmin} towards region of reduced $\nabla\beta_{fast}$

Accessed new regimes with 15% higher $\beta_{\rm N}$

Improved fast-ion transport modeling

C.S. Collins – IAEA FEC 2020

- ITER has goal to reach Q=5, q₉₅>5, SS scenario
- Reverse shear, q_{min} > 2 scenarios are candidates for fully non-inductive (steady state) tokamak operation
 - Good for high β_N limit, elevated confinement, and avoidance of low-order tearing modes

- ITER has goal to reach Q=5 , q₉₅>5, SS scenario
- Reverse shear, q_{min} > 2 scenarios are candidates for fully non-inductive (steady state) tokamak operation
 - Good for high $\beta_{\rm N}$ limit, elevated confinement, and avoidance of low-order tearing modes
- In DIII-D, relatively high beam power drives AEs
 - Observe lower global confinement at higher q_{min}, limits achievable β_N [Holcomb, PoP 22 (2015)], [Heidbrink, PPCF 56 (2014)]

- ITER has goal to reach Q=5 , q₉₅>5, SS scenario
- Reverse shear, q_{min} > 2 scenarios are candidates for fully non-inductive (steady state) tokamak operation
 - Good for high $\beta_{\rm N}$ limit, elevated confinement, and avoidance of low-order tearing modes
- In DIII-D, relatively high beam power drives AEs
 - Observe lower global confinement at higher q_{min}, limits achievable β_N [Holcomb, PoP 22 (2015)], [Heidbrink, PPCF 56 (2014)]

• Multiple AEs cause critical gradient transport

- Fast-ion profiles are stiff
- Any effort to increase the fast-ion gradient results in more transport, losses

[Collins PRL 116 (2016)] [Heidbrink NF 53 (2013)] [Todo, New J. Phys 18 (2016)]

- ITER has goal to reach Q=5 , q₉₅>5, SS scenario
- Reverse shear, q_{min} > 2 scenarios are candidates for fully non-inductive (steady state) tokamak operation
 - Good for high $\beta_{\rm N}$ limit, elevated confinement, and avoidance of low-order tearing modes
- In DIII-D, relatively high beam power drives AEs
 - Observe lower global confinement at higher q_{min}, limits achievable β_N [Holcomb, PoP 22 (2015)], [Heidbrink, PPCF 56 (2014)]

• Multiple AEs cause critical gradient transport

- Fast-ion profiles are stiff
- Any effort to increase the fast-ion gradient results in more transport, losses

[Collins PRL 116 (2016)] [Heidbrink NF 53 (2013)] [Todo, New J. Phys 18 (2016)]

Important questions:

How well do AE control actuators work in varied parameters? How can we effectively predict EP profiles/losses to optimize scenarios?

Goal: Validate Models in Order to Calculate EP Transport & Optimize Scenarios For Future Fusion Reactors

TGLF-EP+Alpha is the simplest, fastest critical gradient EP transport model

-provides fully physics-based calculation of transported EP profile and corresponding EP diffusion -avoids detailed nonlinear calculations of saturated mode amplitudes

Goal: Validate Models in Order to Calculate EP Transport & Optimize Scenarios For Future Fusion Reactors

TGLF-EP+Alpha is the simplest, fastest critical gradient EP transport model

-provides fully physics-based calculation of transported EP profile and corresponding EP diffusion -avoids detailed nonlinear calculations of saturated mode amplitudes

Goal: Validate Models in Order to Calculate EP Transport & Optimize Scenarios For Future Fusion Reactors

TGLF-EP+Alpha is the simplest, fastest critical gradient EP transport model

-provides fully physics-based calculation of transported EP profile and corresponding EP diffusion -avoids detailed nonlinear calculations of saturated mode amplitudes \rightarrow good for scoping

- DIII-D experiments with AE control in SS scenario
- Broad fast-ion profiles reduce core EP transport

 Further improvement by tuning q-profile with ECCD
- Progress with TGLF-EP+Alpha model validation

DIII-D's Beam Upgrade Enabled Improved Fast-Ion Confinement While Maintaining Scenario

- In 2018 experiments with 2 off-axis NBI sources, AEs were reduced and neutron ratio increased by decreasing ∇β_{fast} (using higher plasma density)
 - However, β_N decreased ($\beta_N \rightarrow 1.5$)
 - q-profile had less shear, confinement decreased

DIII-D's Beam Upgrade Enabled Improved Fast-Ion Confinement While Maintaining Scenario

- In 2018 experiments with 2 off-axis NBI sources, AEs were reduced and neutron ratio increased by decreasing ∇β_{fast} (using higher plasma density)
 - However, β_N decreased ($\beta_N \rightarrow 1.5$)
 - q-profile had less shear, confinement decreased
- Recent experiments using 4 off-axis NBI further decreased $\nabla \beta_{fast}$, improved neutron ratio ~25% while maintaining scenario and β_N

See also:

Victor, 662. Global stability of elevated-q_{min}, SS scenario plasmas on DIII-D Park, 1009. Off-axis Neutral Beam Current Drive for Advanced Tokamak Grierson, 744. Testing the DIII-D Co/Counter Off-axis Neutral Beam ...

DIII-D's Beam Upgrade Enabled Improved Fast-Ion Confinement While Maintaining Scenario

Neutron Ratio Improved with AE Control Techniques

AEs can be suppressed by

- Manipulating equilibrium profiles
- Increasing the mode damping
- Decreasing the fast-ion drive
- In practice, actuators affect multiple mechanisms
 - Manipulating NBI heating can change beam profile, q profile, plasma pressure
 - ECCD can affect q profile, plasma pressure, ...

shot	% off-axis NBI (ramp/flattop)	Control Method
176050	25/32	old reference
180619	26/30	new reference
180620	26/72	off-axis NB (flattop only)
180622	36/63	spread beam voltage
180623	71/72	off-axis NBI
180624	83/71	max off-axis NBI
180625	83/72	max off-axis NBI + ECCD on-axis

C.S. Collins - IAEA FEC 2020

Control Case: Representative High-q_{min} Plasma Was Prepared to Test Various AE Control Methods

- Established sustained reverse shear (q₀>q_{min}) with q_{min}>2 using early heating
 - Preprogrammed beam timing was same for every shot (no β_N feedback)
 - Off-axis ECCD helped broaden current profile and prevent tearing modes

Control Case: Representative High-q_{min} Plasma Was Prepared to Test Various AE Control Methods

- Established sustained reverse shear (q₀>q_{min}) with q_{min}>2 using early heating
 - Preprogrammed beam timing was same for every shot (no β_N feedback)
 - Off-axis ECCD helped broaden current profile and prevent tearing modes
- First step: Early heating timing was varied to improve q-profile evolution

Early Heating Increases ρ_{amin} , Reducing EP Transport

- Early heating drives offaxis inductive current and larger ρ_{qmin}
 - Plasma and beam pressure profiles similar
 - Similar AE activity, but neutron ratio improved

Early Heating Increases ρ_{amin} , Reducing EP Transport

- Early heating drives offaxis inductive current and larger ρ_{qmin}
 - Plasma and beam pressure profiles similar
 - Similar AE activity, but neutron ratio improved
- AE mode location moves outward to region of lower beam density

Early Heating Increases ρ_{amin} , Reducing EP Transport

- Early heating drives offaxis inductive current and larger ρ_{qmin}
 - Plasma and beam pressure profiles similar
 - Similar AE activity, but neutron ratio improved
- AE mode location moves outward to region of lower beam density
- →Improvement in neutron ratio because modes transport fewer core EPs

[Kramer, NF 57, 056024 (2017)]

Experiment: Replace 4 MW of On-Axis with Off-Axis Beams in Flattop Result: Little Difference in AE Activity, Neutron Ratio

- Plasma profiles (q, T_e, n_e) nearly identical
- →Little improvement because little change in ∇β_{fast} at ρ_{qmin} where modes are driven

Experiment: Swap in Off-Axis Beams for Whole Shot Result: Reduced AE Activity, Neutron Ratio Improved 10% in Flattop

ρ_{qmin} moved inward

- thermal profiles similar

 →Improvement due to reducing AE drive by moving ρ_{qmin} towards reduced ∇β_{fast}

TGLF-EP Model and FIDA Measurements Show Broader Beam Pressure Profile Reduced Core Transport of Fast Ions

• AEs cause fast-ion profile to relax to similar gradient

TGLF-EP Model and FIDA Measurements Show Broader Beam Pressure Profile Reduced Core Transport of Fast Ions

- AEs cause fast-ion profile to relax to similar gradient
- Model profile is closer to classical in core (less transport) in off-axis NBI cases

TGLF-EP Model and FIDA Measurements Show Broader Beam Pressure Profile Reduced Core Transport of Fast Ions

- AEs cause fast-ion profile to relax to similar gradient
- Model profile is closer to classical in core (less transport) in off-axis NBI cases

 FIDA measurement also indicates less core transport in off-axis NBI cases

Experiment: OANB + Core ECCD (but q_{min}>2 in Current Ramp Only) Result: Reduced AEs, Neutron Ratio Improved ~35%

Experiment: OANB + Core ECCD (but q_{min}>2 in Current Ramp Only) Result: Reduced AEs, Neutron Ratio Improved ~35%

AE-Induced Fast-Ion Diffusion Calculated by TGLF-EP+Alpha is Within 12% of Measurement

• TGLF-EP+ALPHA is used to calculate EP diffusion (radial, time dep.)

AE-Induced Fast-Ion Diffusion Calculated by TGLF-EP+Alpha is Within 12% of Measurement

• TGLF-EP+ALPHA is used to calculate EP diffusion (radial, time dep.)

• Diffusion is used in TRANSP to calculate neutron rate

- TGLF-EP model overpredicts by 10% or underpredicts by 12% depending on treatment of free parameter (basis function width)
- TRANSP (classical) with no transport overpredicts by 50%

Next Steps: Incorporate EP Transport Models Into Integrated Modeling

- Questions to answer in determining how to achieve SS:
 - What is the optimal q profile?
 - How much do EP instabilities affect performance, H&CD efficiency?
 - How to create the scenario?

Next Steps: Incorporate EP Transport Models Into Integrated Modeling

Need

integrated

modeling!

- Questions to answer in determining how to achieve SS:
 - What is the optimal q profile?
 - How much do EP instabilities affect performance, H&CD efficiency?
 - How to create the scenario?

Next Steps: Incorporate EP Transport Models Into Integrated Modeling

- Questions to answer in determining how to achieve SS:
 - What is the optimal q profile?
 - How much do EP instabilities affect performance, H&CD efficiency?
 - How to create the scenario?

Sensitivity of integrated modeling predictions to fast-ion transport

Need

integrated

modeling!

Summary

 Broadened EP profile enables better control of AEs in steady-state scenarios

- Key factor is moving ρ_{qmin} towards region of reduced $\nabla\beta_{fast}$
- Neutron ratio improved by ~25% in flattop
- Accessed new regimes with 15% higher $\beta_{\rm N}$
- TGLF-EP+ALPHA critical gradient model reproduces EP transport trends
 - Model-based diffusion matches measured neutron rate within 12%

 This work provides a basis for understanding how to avoid AEinduced EP transport in ITER and future advanced tokamak scenarios.

