A Comprehensive Study of Energetic Particle Transport Due to Energetic Particle Driven MHD Instabilities in LHD Deuterium Plasmas

K. Ogawa1,2, M. Isobe1,2, H. Nuga1, S. Kamio1, Y. Fujiwara1, M. I. Kobayashi1,2, S. Sangaroon1,3, R. Seki1,2, H. Yamaguchi1,2, and M. Osakabe1,2

1National Institute for Fusion Science, National Institutes of Natural Sciences
2The Graduate University for Advanced Studies, SOKENDAI
3Mahasarakham University
• DT fusion born α particle confinement is one of the issues for realizing a fusion reactor.
• Energetic α particle transport due to MHD instabilities has been studied.

Neutron (14 MeV): tritium bleeding, electricity generation
α particle (3.5 MeV) : self heating
Energetic confinement study in deuterium experiments in the Large Helical Device (LHD)

- To understand α confinement in a fusion reactor, energetic particle behavior has been studied in LHD.
- Confinement of short-pulsed beam ions in MHD quiescent plasmas can be described as a neoclassical theory.
- Confinement capability of fusion born 1 MeV tritons is comparable with tokamaks having a similar minor radius.

• An energetic confinement study has been performed using intensive neutral beam injectors and comprehensive neutron diagnostics.

Fusion reactions in deuterium plasmas

Primary reaction
• D+D -> \(^{3}\text{He} (0.8 \text{ MeV}) + \text{n} (2.5 \text{ MeV})\)
• D+D -> \(^{3}\text{T} (1 \text{ MeV}) + \text{p} (3 \text{ MeV})\)

Secondary reaction
T+D -> \(^{4}\text{He} (3.5 \text{ MeV}) + \text{n} (14 \text{ MeV})\)

1 mm Φ Sci-Fi

14 MeV n Recoil proton

Scintillation light

Detection efficiency

Number of Sci-Fis

91 LANL Sci-Fi
 Used in TFTR and JT-60U discontinued

109 NIFS Sci-Fi
 Strong against magnetic field

144 Toyama Sci-Fi
 High-counting rate capability

456 Middle Sci-Fi

Poincaré plot of beam ion and triton orbits

- Passing-transit and helically-trapped ions exist in LHD.
- Helically-trapped ion has a poloidal structure.
- 1 MeV triton has large Larmor radius and large orbit deviation from the flux surface.

\(R_{ax} = 3.60 \, \text{m}, \, B_t = 2.75 \, \text{T} \)
Energetic ion driven resistive interchange mode (EIC) excited in a deuterium plasma discharge

- EIC is excited in relatively low-density plasma with intense P-NB injections.
 - Helically-trapped ions created by P-NB excite EIC.
 - The termination of the high-T_i state in LHD.
- Deuterium N-NBs and deuterium P-NBs were injected into a deuterium plasma.
 - $T_{e0} \sim 3$ keV and $n_{e\text{ avg}} \sim 10^{19}$ m$^{-3}$
 - EIC having $\sim 10^{-3}$ T was observed with a magnetic probe located on the vacuum vessel.
 - S_n reflects global confinement of N-NB and P-NB ions.

EIC: X. D. Du et al., Nucl. Fusion (2016).
Beam ion transport due to EIC

- Drop of S_n due to an EIC burst shows that EIC induces beam ion transport.
 - 90% of S_n: plasma-N-NB ion reactions. 10% of S_n: plasma-P-NB ion reactions.
- Drop rate of S_n linearly increases with $b_{\theta_{EIC}}$ and reaches ~13%.
To determine the EIC effect on N-NB and P-NB ions separately, additional experiments were performed.

- Hydrogen N-NBs and deuterium P-NBs were injected into a deuterium plasma.
- $T_{e0} \sim 3$ keV and $n_{e_avg} \sim 10^{19}$ m$^{-3}$.
- The intensity of EIC is almost same as that in a full deuterium NB condition.
- S_n reflects the global confinement of P-NB ions.
Helically-trapped beam ion transport due to EIC

- S_n drops significantly due to an EIC burst.
- Drop rate of S_n reaches $\sim 60\%$. \Rightarrow EIC induces up to 60% of P-NB ion losses.
 - P-NB ions are the driving source of EIC.

- In full-D beam cases: $-dS_n/S_n$ reached 13% with $S_{n_N-NB} \sim 90\%$ and $S_{n_P-NB} \sim 10\%$. \Rightarrow $\sim 8\%$ of N-NB ions are lost due to EIC.
• High triton confinement capability is realized in high-B_t and inward shift of R_{ax}.
• A study of 1 MeV triton transport induced by energetic-particle-driven MHD instabilities was performed under high triton confinement condition.
S_{n,DT} drops rapidly and significantly due to EIC.
Drop rate of S_{n,DT} increases substantially with b_{0,EIC}.
 • Loss of tritons reaches ~30% at b_{0,EIC} ~ 10^{-3} T.
 • 1 MeV tritons are largely transported because the tritons are barely confined.
• Beam ion and DD fusion born triton transport due to energetic-particle-driven MHD instabilities is simultaneously studied in LHD to understand α particle confinement in a fusion burning plasma.
 • The neutron flux monitor is used for beam ion confinement study. A high sensitivity scintillating fiber detector is developed for measuring time-resolved triton confinement.

• Enhanced transport of beam ions and DD fusion born tritons due to EIC burst is observed using neutron diagnostics.

• Experiments in full D and H/D beam conditions shows that EIC induces up to 8% of passing transit beam ion losses and up to 60% of helically-trapped beam ion losses.

• Drop rate of S_{n_DT} increases with $b_{\theta_EIC}^3$ and reaches up to 30% due to EIC. 1 MeV tritons barely confined in LHD are rapidly and significantly lost due to EIC.