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JET is the only ongoing fusion device in which alpha 

effects can be studied experimentally
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• TAEs (Toroidal Alfvén Eigenmodes) are instabilities excited by 

energetic ion radial pressure gradient, experience moderate 

damping by thermal plasma species

• a-driven TAEs may induce energetic ion transport / losses in 

burning plasmas (e.g. in ITER)

• TAEs observed in all plasmas

with elevated q-profile (q0 > 1.5)

in JET DT plasmas (DTE1)

• Caveat: ICRH-accelerated ions

always present, provided large 

TAE drive, dominating a-drive

• No conclusions regarding a-driven TAEs could be drawn from 

JET DTE1 data [Sharapov NF 1999], unlike from successful TFTR 

experiments [Budny NF 1992, Spong NF 1995, Nazikian PRL 1997]



Dedicated advanced scenario under development

for the study of alpha-driven instabilities in JET
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• a-driven TAE growth / damping rate is given by

• Key parameters to maximise TAE drive (ga):

• High a-pressure + large pressure gradient

• Large Padd, Ti (increase fusion yield), Te (increase slowing-down time)

→ Low ne, low Ip (still large enough for alpha confinement)

• Elevated q-profile

• Optimal conditions for TAE excitation 

not naturally fulfilled by parameters 

of baseline or hybrid steady-state 

scenarios in JET DT plasmas

[Garcia, EX1-989]

 dedicated development of an 

advanced scenario for JET-ILW

[Mailloux, OV1-1080]



Observation of alpha-driven TAEs in JET requires

afterglow phase in the pulse
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JET DT pulse 41723 – CASTOR-K, MISHKA
[Sharapov NF 1999]

AfterglowHeating phase
• TAEs very stable during main 

heating phase

• Beam + th. damping ~1-2%

• Alpha drive ~0.1-0.2%

• a-driven TAEs may be observed 

only during afterglow phase

a-driven TAEs
a-drive

Damping

Add. power

• No ICRH before afterglow period in 

DT plasmas

• ICRH used in D plasmas to develop 

scenario & probe TAE stability



ICRH used to reveal and tune ITBs at relatively moderate 

levels of NBI power
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JPN 94850 – 2.5MA/3.4T

• Pulse 94850: ITB triggered with NBI+ICRH - RNT=2.6x1016/s with Ptot=(20+3.8)MW

• No sign of shear reversal in most pulses. ITB triggered upon q=2 surface entering plasma

• Scenario development and ITB tuning done with ~20MW NBI power + ~4MW ICRH, then 

applied to NBI-only pulses at higher NBI power levels (> 24MW)



Afterglow successfully triggered by bespoke real-time 

control scheme
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• Pulse 95973 set up to trigger 

afterglow when

• Neutron rate large 

enough (> 8x1015/s)

• dRNT/dt low (< 1x1013/s2)

• First successful 

demonstration, although just 

above threshold (limited NBI 

power)

• RF power applied to ensure 

safe pulse termination

(requirement for DTE2)

• Neutron rate threshold can 

be used as dud detector 

(requirement for DTE2)



ELM control achieved in advanced scenario
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• Pulse 95973: ELM-free/type-I 

ELMs period before peak 

performance 

• In this example, radiation peaking 

induces power ramp-down just 

following afterglow

• ITB beneficial for performance 

ELM control needed

• ELM pacing by D pellets 

(~1.4mm, ~30Hz-45Hz) effective

• Last sessions much less affected

by ELM issues compared to 

previous sessions, despite larger

NBI power

• H pellets successfully tested 

usable during T campaign

(although H minority concentration 

increase can make ICRH use 

difficult)



Core TAEs observed during RF-powered ITBs
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• Core TAEs n=3-7 seen during D(H) 

ICRH at 51MHz, damped by 

thermal/NBI ions as PNBI increases

• Broadband modes 60-120kHz 

often seen in ITB pulses after TAEs 

disappear under study [Fil 2021]

• Alfvén cascades observed only 

during pulse termination

(shear reversal)

TAEs

Broadband modes



Record pulse, performance comparable to reference

C-wall pulse for alpha studies
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96852, 2.7MA/3.4T 40214, 3.0MA/3.4T, shifted -0.310s

NBI power

Rad. power (total)

Line-integrated density
(interferometry)

Neutron rate

• Pulse 96852: highest

neutron rate obtained to 

date in JET-ILW with NBI 

only (RNT=2.55x1016/s)

• Good ITB obtained with

NBI starting at 45.0s 

(differs from previous

sessions)

• Performance similar to

reference JET C-wall pulse 

for alpha studies

• Afterglow automatically

triggered on RNT rollover

• No ELM-free/type I ELM 

period seen (pacing pellets 

used)



Extrapolation to DT confirms significant progress in 

scenario developement
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TRANSP DT extrapolation

TFTR

• Pulse 92054: former best NBI-only pulse for the study of alpha-driven instabilities [Dumont NF 2018]

• TRANSP DT simulation of 96852 very similar to CRONOS DT simulation of 92054 with extrapolated
NBI power (31MW) [Garcia NF 2019]



Summary & prospects
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• Main deliverable of development phase in D achieved: NBI-only pulses with
good fusion performance in the presence of Internal Transport Barriers

• Core-localised TAEs in pulses with ICRH

• Pulses ready to be run in T and DT, include

• ELM pacing by pellets

• Real-time control-triggered afterglow

• Gas injection with T-compatible modules

• Impossible to achieve 100% reproducibility in this scenario - included in 
strategy for DTE2 by allowing small changes in NBI switch-on time

• Data analysis ongoing, including fast ion transport/losses, MHD…

• Modelling effort ongoing

• TRANSP modelling of best pulses, using refined equilibrium -
extrapolations to DT

• MHD stability analyses to evaluate damping mechanisms remaining during
afterglow phase, and compare to alpha drive

• Experimental effort to couple TAE antenna power in these plasmas  probe 
stable modes [Tinguely, EX/P3-889]

• JET/TFTR comparisons included in DTE2 experimental plans


