KNOSOS, a fast neoclassical code for three-dimensional magnetic configurations

J. L. Velasco¹, I. Calvo¹, F.I. Parra², V. d'Herbemont^{2,3}, H.M. Smith⁴, D. Carralero¹, T. Estrada¹ and the W7-X team

¹ Laboratorio Nacional de Fusión, CIEMAT, Madrid, Spain
 ² Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, U.K.
 ³ Mines ParisTech, Paris, France
 ⁴ Max-Planck Institute for Plasma Physics, Greifswald, Germany

28th IAEA Fusion Energy Conference

10-15 May 2021

Motivation

Stellarators: intrinsically three-dimensional configurations.

- Collisions + inhomogeneity of the magnetic field drive neoclassical transport that is very different from the one in axisymmetric tokamaks.
- Relevant contribution to energy fluxes in the core of reactor-relevant plasmas, even larger than turbulence, e.g. [Dinklage, NF (2013)].

- Configuration **optimized** with respect to neoclassical transport, crucial for achieving best performance of Wendelstein 7-X, e.g. [Beidler, submitted to Nature].
- This talk: neoclassical calculations of radial transport with the novel code KNOSOS (KiNetic Orbit-averaging SOlver for Stellarators).
 - More efficient stellarator optimization.
 - Improved transport analyses.

General goal: fast and accurate calculation of neoclassical transport at low collisionality

Radial transport in several **neoclassical regimes** as calculated with standard codes like DKES [Hirshman, PoF (1986)] (overview in [Beidler, NF (2011)]):

 $(\rho_* = \rho/R$ is the normalized Larmor radius, $\nu_* = R\nu/(\iota v)$ the collisionality, $\epsilon = a/R$ the inverse aspect ratio)

For small ν_* and large E_r , the piece of distribution function that is important for transport becomes increasingly localized in phase space \Rightarrow large computational cost.

Motivation and goal

Goal I: **fast** and accurate calculation of neoclassical transport at low ν_* and E_r of standard size

The $1/\nu$ flux can be computed fast with the code NEO [Nemov, PoP (2007)], but no equivalently fast code exists for the $\sqrt{\nu}$ and ν regimes for arbitrary stellarator geometry.

For this reason, stellarator optimization targets (successfully) the $1/\nu$ flux, e.g. [Beidler, submitted to Nature]:

- Transport of electrons (that are in the $1/\nu$ regime) is reduced.
- This causes negative E_r that indirectly reduces transport of ions (that are in the √ν or ν regimes).

Addressing directly the $\sqrt{\nu}$ or ν flux as well could lead to more efficient optimization. This requires a fast code and could be beneficial when additional optimization criteria (MHD, turbulence...) exist.

Velasco et al., KNOSOS, a fast neoclassical code

Goal II: fast and **accurate** calculation of neoclassical transport at low ν_* and **small** E_r

The component of the magnetic drift that is tangent to the flux-surface is typically ignored in the particle orbits.

This is accurate if

- **I** the aspect ratio $1/\epsilon$ is large and,
 - E_r has the standard size $\sim T_i/(a Z_i e)$.

But there are other scenarios:

- compact stellarators (down to $1/\epsilon = 2.5$ [Ku, FST (2007)]), or
- small *E_r* (close to zero at the crossover between core *E_r* > 0 and *E_r* < 0, e.g. [Pablant, PoP (2018)]).</p>

In these situations, for $\nu_* \ll \rho_*$, an additional regime may appear: superbanana-plateau (instead of the $1/\nu$ seen by DKES).

2 Equations

- **3** Result I: **fast** and accurate calculation of neoclassical transport at low ν_* and E_r of standard size
- 4 Result II: fast and **accurate** calculation of neoclassical transport at low ν_* and **small** E_r
- 5 Summary and plans

- 3 Result I: **fast** and accurate calculation of neoclassical transport at low ν_* and E_r of standard size
- 4 Result II: fast and **accurate** calculation of neoclassical transport at low ν_* and **small** E_r
- 5 Summary and plans

Coordinates on phase space

Spatial coordinates:

- $\Psi = |\Psi_t|$ is the radial coordinate.
 - ▶ $2\pi\Psi_t$ is the toroidal magnetic flux.
- $\blacksquare \ \alpha = \theta \iota \zeta \text{ labels magnetic field lines on the surface.}$
 - θ and ζ are Boozer angles and ι is the rotational transform.
- I is the arc length along the magnetic field line.

Velocity coordinates:

- $\blacksquare v = |\mathbf{v}| \text{ is the particle velocity.}$
- $\lambda = v_{\perp}^2/(v^2 B)$ is the pitch-angle coordinate.
- $\blacksquare \ \sigma = v_{\parallel}/v \text{ is the sign of the parallel velocity.}$

For each species *b*: compute the deviation of the distribution function from a Maxwellian $F_{M,b}$ for trapped particles, $g_b(\psi, \alpha, \lambda, v)$.

Drift kinetic equation

$$\begin{split} \int_{l_{b_1}}^{l_{b_2}} \frac{\mathrm{d}I}{|\mathbf{v}_{\parallel}|} \left(\mathbf{v}_{M,b} + \frac{B}{\langle B \rangle} \mathbf{v}_E \right) \cdot \nabla \alpha \left(\partial_{\alpha} + \partial_{\alpha} \lambda |_J \partial_{\lambda} \right) \mathbf{g}_b - \int_{l_{b_1}}^{l_{b_2}} \frac{\mathrm{d}I}{|\mathbf{v}_{\parallel}|} \mathbf{C}_b^{\mathrm{lin}}[\mathbf{g}_b] = \\ &= -\int_{l_{b_1}}^{l_{b_2}} \frac{\mathrm{d}I}{|\mathbf{v}_{\parallel}|} (\mathbf{v}_{M,b} + \mathbf{v}_E) \cdot \nabla \psi \Upsilon_b \mathcal{F}_{M,b} \,. \end{split}$$

At boundary between trapping and passing particles, $g_b = 0$. Here:

Coefficients of the equation: integrals over *I* between bounce points I_{b_1} and I_{b_2} (where $v_{\parallel} = 0$): $\int_{l_1}^{l_{b_2}} \frac{dI}{|v_{\parallel}|}(...) = \frac{1}{v} \int_{l_1}^{l_{b_2}} \frac{dI}{\sqrt{1 - \lambda B(\alpha, l)}}(...).$

■
$$C_b^{\text{lin}}[g_b] = \frac{\nu_{\lambda,b}v_{||}}{v^2 B} \partial_\lambda \left(v_{||} \lambda \partial_\lambda g_b \right)$$
 is the linearized pitch-angle collision operator.
■ $\Upsilon_b = \frac{\partial_\psi F_{M,b}}{F_{M,b}} = \frac{\partial_\psi n_b}{n_b} + \frac{\partial_\psi T_b}{T_b} \left(\frac{m_b v^2}{2T_b} - \frac{3}{2} \right) + \frac{Z_b e \partial_\psi \varphi_0}{T_b}$ is a combination of thermodynamical forces.

v_{M,b} =
$$\frac{m_b v^2}{Z_b e} \left(1 - \frac{\lambda B}{2}\right) \frac{B \times \nabla B}{B^3}$$
 and **v**_E = $-\frac{\nabla \varphi \times B}{B^2}$ are the magnetic and $E \times B$ drifts.
φ(ψ, α, I) = $\varphi_0(\psi) + \varphi_1(\psi, \alpha, I)$, with $|\varphi_1| \ll |\varphi_0|$.
The term with $\partial_\alpha \lambda|_J \equiv -\left(\int_{I_{b_1}}^{I_{b_2}} \frac{dI}{|v_{\parallel}|} \lambda \partial_\alpha B\right) / \left(\int_{I_{b_1}}^{I_{b_2}} \frac{dI}{|v_{\parallel}|} B\right)$ ensures conservation of J .

Assumptions (details in [Calvo (2017) PPCF, d'Herbemont (in preparation)])

At low collisionality, motion of trapped particles along B (i.e. in *l*) much faster than collisions.

- \Rightarrow Distribution function independent of arc-length /.
- \Rightarrow Coefficients of the equation: integrals over *l* between bounce points:
- \Rightarrow Differential equation in two variables: λ and α .
- \Rightarrow Fast computation.

Common to most codes: in order to describe neoclassical transport with a radially local equation (instead of a global code such as FORTEC-3D [Satake (2008), PFR]) the magnetic configuration needs to

- have large aspect-ratio* [d'Herbemont (in preparation)] and/or
 - (* this also allows to use the pitch-angle collision operator)
- be close to omnigeneity, i.e., to perfect neocl. optimization [Calvo (2017) PPCF].
- As a result of this, our radially-local bounce-averaged equation is valid in two limits, corresponding to the two calculations that we will present next.

2 Equations

3 Result I: **fast** and accurate calculation of neoclassical transport at low ν_* and E_r of standard size

4 Result II: fast and **accurate** calculation of neoclassical transport at low ν_* and **small** E_r

5 Summary and plans

Velasco et al., KNOSOS, a fast neoclassical code

Drift kinetic equation in the limit of large-aspect ratio

In this section, $\epsilon \ll 1$ and $E_r \sim T/(a Ze)$. Therefore, in equation

$$\begin{split} \int_{l_{b_1}}^{l_{b_2}} \frac{\mathrm{d}I}{|\mathbf{v}_{\parallel}|} \left(\mathbf{v}_{M,b} + \frac{B}{\langle B \rangle} \mathbf{v}_E \right) \cdot \nabla \alpha \left(\partial_{\alpha} + \partial_{\alpha} \lambda |_J \partial_{\lambda} \right) \mathbf{g}_b - \int_{l_{b_1}}^{l_{b_2}} \frac{\mathrm{d}I}{|\mathbf{v}_{\parallel}|} C_b^{\mathrm{lin}}[\mathbf{g}_b] = \\ &= -\int_{l_{b_1}}^{l_{b_2}} \frac{\mathrm{d}I}{|\mathbf{v}_{\parallel}|} (\mathbf{v}_{M,b} + \mathbf{v}_E) \cdot \nabla \psi \Upsilon_b F_{M,b} \,, \end{split}$$

the terms $\mathbf{v}_{M,b} \cdot \nabla \alpha$ and $\mathbf{v}_E \cdot \nabla \psi$ terms are negligible. We are left with

$$\int_{l_{b_1}}^{l_{b_2}} \frac{\mathrm{d}I}{|\boldsymbol{v}_{\parallel}|} \frac{B}{\langle B \rangle} \boldsymbol{v}_E \cdot \nabla \alpha \left(\partial_{\alpha} + \partial_{\alpha} \lambda |_J \partial_{\lambda} \right) \boldsymbol{g}_b - \int_{l_{b_1}}^{l_{b_2}} \frac{\mathrm{d}I}{|\boldsymbol{v}_{\parallel}|} \boldsymbol{C}_b^{\mathrm{lin}}[\boldsymbol{g}_b] = -\int_{l_{b_1}}^{l_{b_2}} \frac{\mathrm{d}I}{|\boldsymbol{v}_{\parallel}|} \boldsymbol{v}_{M,b} \cdot \nabla \psi \Upsilon_b \boldsymbol{F}_{M,b} \cdot \nabla \psi$$

This equation models rigorously the transport of large aspect-ratio stellarators at low collisionality [d'Herbemont (in preparation)]. Specifically, it describes:

•
$$\epsilon^{3/2} \gg \nu_* \gg \rho_*/\epsilon \Rightarrow 1/\nu$$
 regime.

$$\blacksquare \ \nu_* \ll \rho_*/\epsilon \Rightarrow \sqrt{\nu} \text{ or } \nu \text{ regimes}$$

For large aspect ratio, this equation coincides with the orbit average of the equation solved by DKES.

Calculate D_{11} as a function of $s = \frac{\psi}{\psi_{LCMS}}$, ν_* and $\frac{E_r}{\nu B_{00}}$, with $Q_b \sim \int d\nu F_{M,b} \Upsilon_b D_{11}$. W7-X low-mirror (AIM), s = 0.046 (other devices at [Velasco, JCP (2020)])

Overall good agreement.

Calculation of a flux-surface takes seconds in a single processor (instead of hours).

Calculate D_{11} as a function of $s = \frac{\psi}{\psi_{LCMS}}$, ν_* and $\frac{E_r}{\nu B_{00}}$, with $Q_b \sim \int d\nu F_{M,b} \Upsilon_b D_{11}$. W7-X standard (EIM), s = 0.046 (other devices at [Velasco, JCP (2020)])

Overall good agreement.

Calculation of a flux-surface takes seconds in a single processor (instead of hours).

Calculate D_{11} as a function of $s = \frac{\psi}{\psi_{LCMS}}$, ν_* and $\frac{E_r}{\nu B_{00}}$, with $Q_b \sim \int d\nu F_{M,b} \Upsilon_b D_{11}$. W7-X high-mirror (KJM), s = 0.046 (other devices at [Velasco, JCP (2020)])

Overall good agreement.

Calculation of a flux-surface takes seconds in a single processor (instead of hours).

Calculate D_{11} as a function of $s = \frac{\psi}{\psi_{LCMS}}$, ν_* and $\frac{E_r}{\nu B_{00}}$, with $Q_b \sim \int d\nu F_{M,b} \Upsilon_b D_{11}$. W7-X high-iota (FTM), s = 0.046 (other devices at [Velasco, JCP (2020)])

Overall good agreement.

Calculation of a flux-surface takes seconds in a single processor (instead of hours).

Calculate D_{11} as a function of $s = \frac{\psi}{\psi_{LCMS}}$, ν_* and $\frac{E_r}{\nu B_{00}}$, with $Q_b \sim \int d\nu F_{M,b} \Upsilon_b D_{11}$. W7-X low-iota (DBM), s = 0.046 (other devices at [Velasco, JCP (2020)])

Overall good agreement.

Calculation of a flux-surface takes seconds in a single processor (instead of hours).

Calculate D_{11} as a function of $s = \frac{\psi}{\psi_{LCMS}}$, ν_* and $\frac{E_r}{\nu B_{00}}$, with $Q_b \sim \int d\nu F_{M,b} \Upsilon_b D_{11}$. W7-X low-mirror (AIM), s = 0.413 (other devices at [Velasco, JCP (2020)])

Overall good agreement.

Calculation of a flux-surface takes seconds in a single processor (instead of hours).

Calculate D_{11} as a function of $s = \frac{\psi}{\psi_{LCMS}}$, ν_* and $\frac{E_r}{\nu B_{00}}$, with $Q_b \sim \int d\nu F_{M,b} \Upsilon_b D_{11}$. W7-X standard (EIM), s = 0.413 (other devices at [Velasco, JCP (2020)])

Overall good agreement.

Calculation of a flux-surface takes seconds in a single processor (instead of hours).

Calculate D_{11} as a function of $s = \frac{\psi}{\psi_{LCMS}}$, ν_* and $\frac{E_r}{\nu B_{00}}$, with $Q_b \sim \int d\nu F_{M,b} \Upsilon_b D_{11}$. W7-X high-mirror (KJM), s = 0.413 (other devices at [Velasco, JCP (2020)])

Overall good agreement.

Calculation of a flux-surface takes seconds in a single processor (instead of hours).

Calculate D_{11} as a function of $s = \frac{\psi}{\psi_{LCMS}}$, ν_* and $\frac{E_r}{\nu B_{00}}$, with $Q_b \sim \int d\nu F_{M,b} \Upsilon_b D_{11}$. W7-X high-iota (FTM), s = 0.413 (other devices at [Velasco, JCP (2020)])

Overall good agreement.

Calculation of a flux-surface takes seconds in a single processor (instead of hours).

Calculate D_{11} as a function of $s = \frac{\psi}{\psi_{LCMS}}$, ν_* and $\frac{E_r}{\nu B_{00}}$, with $Q_b \sim \int d\nu F_{M,b} \Upsilon_b D_{11}$. W7-X low-iota (DBM), s = 0.413 (other devices at [Velasco, JCP (2020)])

Overall good agreement.

Calculation of a flux-surface takes seconds in a single processor (instead of hours).

1 Motivation and goal

2 Equations

- 3 Result I: fast and accurate calculation of neoclassical transport at low ν_* and E_r of standard size
- 4 Result II: fast and **accurate** calculation of neoclassical transport at low ν_* and **small** E_r

5 Summary and plans

Drift kinetic equation for small E_r in optimized stellarators

In this section, $\epsilon \ll 1$ but $E_r \ll T/(aZe)$. Therefore, in equation

$$\begin{split} \int_{l_{b_1}}^{l_{b_2}} \frac{\mathrm{d}I}{|\mathbf{v}_{\parallel}|} \left(\mathbf{v}_{M,b} + \frac{B}{\langle B \rangle} \mathbf{v}_E \right) \cdot \nabla \alpha \left(\partial_{\alpha} + \partial_{\alpha} \lambda |_J \partial_{\lambda} \right) \mathbf{g}_b - \int_{l_{b_1}}^{l_{b_2}} \frac{\mathrm{d}I}{|\mathbf{v}_{\parallel}|} C_b^{\mathrm{lin}}[\mathbf{g}_b] = \\ &= -\int_{l_{b_1}}^{l_{b_2}} \frac{\mathrm{d}I}{|\mathbf{v}_{\parallel}|} (\mathbf{v}_{M,b} + \mathbf{v}_E) \cdot \nabla \psi \Upsilon_b F_{M,b} \,, \end{split}$$

the terms $\mathbf{v}_{M,b} \cdot \nabla \alpha$ and $\mathbf{v}_E \cdot \nabla \psi$ are not negligible [Calvo (2017) PPCF]:

The term $\partial_{\alpha}\lambda|_J\partial_{\lambda}$ is small in this limit, but we retain it in order to deal numerically with very deeply trapped particles [Velasco (2020) JCP].

This equation models rigorously the transport of optimized large-aspect ratio stellarators at low collisionality [Velasco (2020) JCP]. Specifically, for small E_r , it describes:

•
$$\epsilon^{3/2} \gg \nu_* \gg \rho_* \Rightarrow 1/\nu$$
 regime.

•
$$u_* \ll \rho_* \Rightarrow \text{superbanana-plateau or } \sqrt{\nu} \text{ regimes.}$$

Relevance of the tangential magnetic drift $\mathbf{v_M}\cdot\nabla\alpha$ for the transport analysis of experimental discharges

- Compare correct calculation against DKES-like calculation with $\mathbf{v}_{\mathbf{M}} \cdot \nabla \alpha = 0$ ($\mathbf{v}_{\mathbf{E}} \cdot \nabla \psi \sim \varphi_1$ is set to 0 in both cases).
- Input: experimental profiles and configuration (EIM) of W7-X shot #180918041 [Estrada (2021) NF].
 - High performance, reduced turbulent contribution to ion energy transport.
- Well-known qualitative behaviour: peak in Q_i reduced and moved towards negative E_r (opposite effect, not shown, for the electrons).

Results change quantitatively: neoclassical flux is 10 % larger:

- Relative weight of neoclassical/ turbulent transport not altered.
- ▶ Effect is small but systematic.

Accurate calculation at low ν_* and small E_r

Parameter dependence of the role of the tangential magnetic drift $\mathbf{v_M}\cdot\nabla\alpha$

Effect of tangential magnetic drift, not so large in W7-X due to large aspect ratio.

- Large in LHD [Velasco, JCP (2020)].
- Larger for the high-mirror (KJM) configuration of W7-X, specially at higher β due to diamagnetic effect.
- Even for standard (EIM) configuration of W7-X, will become important at higher temperature.

Repeat comparison using representative profiles from [Carralero, EPS (2021)]:

- $\delta Q_i/Q_i$ large for small $n_i T_i^{-5/2}$ and $|E_r|$.
- $\delta Q_i/Q_i \sim 1$ possible in next campaigns of W7-X.

Accurate calculation at low ν_* and small E_r

1 Motivation and goal

2 Equations

- 3 Result I: **fast** and accurate calculation of neoclassical transport at low ν_* and E_r of standard size
- 4 Result II: fast and **accurate** calculation of neoclassical transport at low ν_* and **small** E_r

5 Summary and plans

We have shown that KNOSOS is a powerful low-collisionality neoclassical code that:

- is extremely fast, and at the same time,
- **a** can calculate physical effects usually neglected: tangential magnetic drift and φ_1 .

There is a wide variety of plasma physics problems that it can be applied to:

- analysis of experimental discharges,
- stellarator optimization (installed at CIEMAT branch of STELLOPT; part of EUROfusion's main (TSVV) task on stellarator optimization),
- input for impurity transport simulations (E_r and φ₁) and for gyrokinetic simulations (distribution function g_b) and other transport simulations (D₁₁ to e.g. neotransp).

KNOSOS is publicly available at

https://github.com/joseluisvelasco/KNOSOS