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Introduction & Motivation:

+ FRNN produces accurate “disruption score” for probabiity of “when”
imminent disruption wil occur + a sensitivity analysis in real time for

underlying reasons as to ‘why? ”

+ Integration of Al/DL FRNN predictor into DIII-D plasma control

system(PCS)

-> D3D’s "start-up" phase involving over 200 shots in May/June
2020 showed ‘FRNN inference engine’ can be readiy functional (~ 1.7

ms) during reaktime operations;

- Motivates systematic studies of actuator engagement to
possibly modify the plasma state to avoid or delay onset of disruptions
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+Train LSTM(Long Short Tem Memory
Network) - iteratively;

+ Evaluate using ROC (Receiver Operating
Characteristics) and cross-validation loss for
every epoch (equivalent of entire data set for
each  iteration)
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FRNN with Physics-based inputs: HPC Training &
Prediction for disruption with enhanced accuracy
and advanced alarm time
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FIG. 1. Comparison of the ROC curves with and without the n=1
finite frequency mode amplitude (“nirms”)
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Distinguishing disruptive and non-disruptive tearing modes
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FIG. 2. DIlI-D shot number 161362 in the left panel and DIlI- shot number 170239 in the
right panel. In each panel, the upper 4 sub-panels show measured signals as FRNN input,

and the bottom sub-panel show FRNN model outputs

Studying contributions of physics-based
signals to disruption score
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FIG 3. Evolution of the sensitivity score of the shot #164582

Summary & Future Studies:
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- Exciting neural network to discriminate
between disruptive and non-disruptive tearing modes.

~=> FRNN ‘inference enging” demonstrably
functional (~ 1.7 ms) on time-scales needed for real-fime
actuator engagement.

. - Motivates ongoing & future efforts to
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