

CONTROL OF THE X-POINT RADIATOR IN FULLY-DETACHED ASDEX UPGRADE H-MODE PLASMAS

<u>M. Bernert</u>, F. Janky, B. Sieglin, A. Kallenbach, B. Lipschultz¹, O.Pan, F. Reimold², S. Wiesen³, M. Wischmeier, O. Kudlacek, M. Cavedon, P. David, M.G. Dunne, B. Kurzan, R.M. McDermott, W. Treutterer, E. Wolfrum, D. Brida, O. Février⁴, S. Henderson⁵, M. Komm⁶, the EUROfusion MST1 team^{*} and the ASDEX Upgrade Team^{**}

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Max Planck Institute for Plasma Physics, Garching, Germany ¹University of York, York Plasma Institute, York, United Kingdom ⁴EPFL, Swiss Plasma Center (SPC), Lausanne, Switzerland ²Max Planck Institute for Plasma Physics, Greifswald, Germany

³Forschungszentrum Jülich Gmbh, IEK, Jülich, Germany ⁵CCFE, Culham Science Centre, Abingdon, United Kingdom ⁶Institute of Plasma Physics of the CAS, Prague, Czech Rep. *See: B. Labit et al 2019 Nucl. Fusion 59 086020 **See: H. Meyer et al 2019 Nucl. Fusion 59 112014

Motivation

Detachment is essential for ITER & DEMO

Dissipated power fraction f_{diss}≥95% Partial to pronounced detachment

Induced by impurity seeding
 Reattachment ↔ Radiative collapse

Control is crucial

- Still requires a stable scenario
- ELMs lead to transient reattachment
 - \rightarrow can they be avoided?

- The X-point radiator (XPR)
 - Movement of the XPR
- Real-time Control of the XPR position
- An ELM-suppressed regime

The X-point radiation regime

- Detachment in metal machines achieved with seeding
- With the pronounced detachment of the outer divertor, an intense, localized radiator evolves close to the X-point.
- Most likely radiation condensation (MARFE-like)
- Radiated power fraction close to 100%
 XPR radiates up to 1/3 of the heating power
 - X-point radiation is:
 - ➔ Stable scenario
 - → Existing with N or Ar seeding (at AUG)
 - → Existing in a wide range of heating power:
 P_{heat} [MW] = 2.5 20
 P_{heat}/P_{LH} = 1 5

The X-point radiation regime

- Radiator reproduced by SOLPS [Reimold, NF 2015]
- Temperature reduction within confined region
 - D line radiation observed \rightarrow efficient recombination
 - $T_e = 1-2 \text{ eV}, n_e \ge 3.10^{20} \text{ m}^{-3}$
 - → Parallel temperature gradients inside confined region!

Why is it stable? Hypotheses:

- Highest flux expansion ↔ longest connection length to midplane
 - \rightarrow Low, sustainable parallel temperature gradients
 - \rightarrow Power flux driven parallel to magn. field
 - \rightarrow Radiator acts as heat sink
- Influence of near divertor (neutral & impurity penetration for local cooling)

[I.Senichenkov, PPCF 2021]

Overview of an XPR discharge

Movement of the X-Point radiation peak

Tomographic reconstruction of X-point radiation movement (#30506, N seeding)

- Radiator forms close to X-point
- Moves further inside
- Up to 15 cm inside confined region (ρ_{pol} ≈ 0.99) observed

Tracking using AXUV diodes (#32273, N seeding)

Actively influencing the location

- Location can be influenced by heating power or nitrogen seeding level
 - No clear scaling of position with c_N or Γ_N (& P_{heat})

Implemented real time control

Sensor: AXUV diodes

- ELM filter & offset subtraction
- Peak defined by 1st moment

Actuator: N or Ar seeding

- PI controller
- Further possibility: Heating power

First application: Location & heating variation

• Detection within 5mm

ASDEX Upgrade

- Power steps well compensated
- Controller unstable at:
 - Location around 4 cm
 - Low heating power

Scenario (in ELMy H-mode) stable for $P_{heat} = 2.5 \text{ MW} \approx P_{LH}$

Applicability to other scenarios

- Tested for N seeding
 with 2-18 MW
- Applicable also to Ar seeding
 - Adjusted gains
 - noisy signal and noisy feedback

First application: High location

- Control up to 10 cm above X-point (and higher)
- Power trips also far inside well compensated
 - → stable regime!

ELMs disappear for location higher than 7 cm!

An ELM-suppressed regime

Sudden change of characteristics:

- + No ELM signatures
- Density reduced by 15%
- W_{MHD} reduced by ~10%
- + Increased divertor
- neutral compression
- + Reduced W content

T_e & n_e evolution – divertor vs midplane

XPR **Divertor Thomson** Pedestal Pedestal changes 60 1.2 1200 AUG #38781 1.0 1000 further inside than 3.0 ي 0.0 ي 0.4 ي n_{e} [10²⁰m⁻³] 800 1.5s ۲_e [eV] e. radiator 600 400 Pedestal stability 200 0.2 0.0 changed by XPR 1.2 1200 1000 1.0 0. 4.0 س^{ء]} 4.0 ل n_{e} [10²⁰m⁻³] 800 eV] eV] 2.5s 600 Div. Temperature 400 reduces only 0.2 200 0.0 'behind' XPR 1200 1.2 1.0 1000 T_e ≈ 1-2 eV ۵.0 ^{[2} ۵.0 في ۵.4 س^{[2} n_{e} [10²⁰m⁻³] 800 3.25s eV] e N $n_e \le 2.10^{20} \, \text{m}^{-3}$ 600 400 0.2 200 0.0 Pedestal 1.2 1200 1000 1.0 gradients reduce $[10^{20}m^{-3}]$ 800 [eV] [eV] 4.0s at last step 600 400 ~ Core T_e persists 200 0.2 0.0 (higher core ⊽T_e) 1.4 1.6 1.8 2.0 1.4 1.2 1.2 1.3 1.5 1.6 0.8 0.9 1.0 1.1 1.0 R_{mai} [m] R_{mai} [m] ρ_{pol}

Summary

- X-point radiation is a stable regime, shown in AUG & JET
- The X-point radiator moves inside the confined region
- The movement can be actively controlled
- First time control of full detachment!
- A high location of the radiator leads to ELM suppression

Promising regime for a future reactor:

- Operational window between detachment and radiative collapse
- ✓ Simple observer
- ✓ ELM suppression

App futu

Applicability for a future reactor to be investigated