Achievements of actively controlled divertor detachment compatible with sustained high confinement core in DIII-D & EAST

Liang Wang1, H. Wang2, A. M. Garofalo2, X. Gong1, H. Guo2, D. Eldon2, Q. Yuan1, S. Ding1, K. D. Li1, K. Wu1, J. C. Xu1, J. B. Liu1, L. Y. Meng1, Y. M. Duan1, B. Zhang1, M. W. Chen1, B. Cao1, Z. S. Yang1, F. Ding1, G. S. Xu1, J. P. Qian1, J. Huang1, A. Hyatt2, D. Weisberg2, J. McClenaghan2, A. W. Leonard2, J. Barr2, M. Fenstermacher3, C. Lasnier3, J. G. Watkins4, M.W. Shafer5, R. J. Buttery2, D. Humphreys2, D. Thomas2, B. J. Xiao1, G.-N. Luo1, J. Li1, B. N. Wan1

1ASIPP, China \hspace{1cm} 2GA, US \hspace{1cm} 3LLNL, US \\
4Sandia National Laboratories, US \hspace{1cm} 5ORNL, US

28th IAEA FEC, May 10-15, 2021 online
Outline

➢ Motivation & Major Progresses

➢ Active detachment control compatible with core
 ● DIII-D: fully detached high-\(\beta_p\) plasmas
 ● EAST H-mode plasmas

➢ Summary & Near-term Plans
Divertor heat load control & Core-Edge integration are critical issues for fusion reactors

- A steady-state tokamak fusion reactor: sustain fusion energy output for sufficiently long operation
 - Detachment: most promising means for SS PWI control

SS Fusion Core
- Ignition
- High fusion gain
- Non-inductive CD
- Controlled Stability
- ...

High heat flux
Long duration

Boundary/PWI
- Materials life cycle
- Pumping & He removal
- Fueling/Recycling
- T Retention
- …

Boundary condition

L. Wang / 28th IAEA-FEC, May 2021
Joint DIII-D/EAST research demonstrated active control of detachment compatible with improved core plasma

EAST
- ITER-like W divertor
- RF heating
- Long pulse
- ...

DIII-D
- High performance
- Control & Phys.
- Full diagnostics
- ...

High β_p scenario: a promising candidate for ITER’s steady-state operation

DIII-D: Integration of full detachment + ITB + ETB in high β_p scenario
- $T_{e,\text{div}} \leq 5\text{eV}, H_{98} \sim 1.5, \beta_N \sim 3, \beta_p > 2$ and very low divertor particle flux
- Excellent core-edge-divertor integration [L. Wang et al., Nature Commun. 12, 1365 (2021)]

EAST: A series of active detach. controllers compatible with H-mode
- P_{rad} (2017), J_{sat} (2018), $T_{e,\text{div}}$ (2019), $T_{e,\text{div}} + P_{\text{rad}}, x$-point (2019), T_{IR} (2019)
- $T_{e,\text{div}} \sim 5\text{eV} & H_{98} > 1$ in standard H-mode, grassy ELMy H-mode, high β_p scenario
Both EAST & DIII-D successfully developed active detachment controllers compatible with high-\(H_{98}\) core plasmas

- **EAST:** 5 detachment/radiation controllers achieved with core \(H_{98} > 1\)

<table>
<thead>
<tr>
<th>Control methods</th>
<th>Control parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total radiation \cite{Wu18NF}</td>
<td>(P_{\text{rad, total}})</td>
</tr>
<tr>
<td>Div. particle flux \cite{Wang19NF,Yuan20FED}</td>
<td>(j_{\text{sat}})</td>
</tr>
<tr>
<td>Div. electron temperature \cite{Eldon21NME}</td>
<td>(T_{\text{et}})</td>
</tr>
<tr>
<td>Combination of div. electron temperature and X-point radiation \cite{Xu20NF}</td>
<td>(T_{\text{et}} + P_{\text{rad, X-point}})</td>
</tr>
<tr>
<td>Div. target temperature \cite{Chen20NF}</td>
<td>(T_{\text{t, peak}})</td>
</tr>
</tbody>
</table>

- **DIII-D:** DoD controller via \(j_{\text{sat}}\) achieved with core \(H_{98} \approx 1.5\) in high \(\beta_p\) scenario

<table>
<thead>
<tr>
<th>Control methods</th>
<th>Control parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Div. electron temperature \cite{Eldon17NF}</td>
<td>(T_{\text{et, DivTS}})</td>
</tr>
<tr>
<td>Div. radiation \cite{Eldon17NF}</td>
<td>(T_{\text{et}} + P_{\text{rad, div}})</td>
</tr>
<tr>
<td>Div. particle flux \cite{Eldon21NME}</td>
<td>(j_{\text{sat}})</td>
</tr>
</tbody>
</table>
Outline

➢ Motivation & Major Progresses

➢ Active detachment control compatible with core
 ● DIII-D: fully detached high-β_p plasmas
 ● EAST H-mode plasmas

➢ Summary & Near-term Plans
High β_p is a promising candidate scenario for steady-state fusion core, facilitating core-edge-divertor integration

- High β_p → Strong Shafranov shift → High confinement quality → high fusion gain → reduce reactor cost
 - Large-radius ITB + ETB → isolate hot core vs cold boundary

- High β_p: high confinement at lower pedestal T_e → benefit heat exhaust
 - Full detachment with $T_{e,\text{div}} \leq 5$ eV across the entire target
 - ITB breaks core stiffness and improves core-edge integration

- Recent experiments & simulations support the possibility of high β_p scenario for ITER reaching $Q=10$ at low I_p [S. Ding, this Conf., EX/1-TH/1-3, Tue AM]

X. Gong, this conference, EX/1-TH/1-5, Tue AM
A. Garofalo, AAPPS-DPP 2019; J. Qian, APS-DPP 2019; J. McClenaghan, IAEA-FEC 2018; J. Huang, EPS-DPP 2019

L. Wang / 28th IAEA-FEC, May 2021
DIII-D: Excellent compatibility of detachment and high global performance has been achieved in N$_2$ seeded high β_p plasmas

- $\beta_N \sim 3$, $\beta_p \sim 2.4$, $H_{98} \sim 1.5$, $f_{GW} > 0.9$, $f_{NI} \sim 0.7$

- Degree of Detachment feedback control
 - Adjust impurity puff rates [D. Eldon, this conference, EX/P1-934]
 - DoD $\sim I_{roll}/I_{sat}$, follows the control preset

- Radiation dominates the power dissipation
 - $P_{rad, tot}/P_{nbi} \sim 0.75$; $P_{rad, core}/P_{nbi} \sim 0.3$

- IR peak heat flux from 2MW/m2 to \sim0.3MW/m2

H. Wang, 62nd APS-DPP, 2020; H. Wang, 29th ITPA-DSOL, 2020
DIII-D: Full detachment and sustained large-radius ITB + ETB are simultaneously demonstrated in high β_p plasmas

- $T_{e,\text{div}} \leq 5\text{eV}$ across entire target plates
 - > 90% divertor pressure loss
 - DoD >5 with strong J_{sat} reduction
 - High neutral pressure \rightarrow exhaust

- ITB grows during detachment
 - ITB at a large radius
 - n_e and T_e ITB grows and expand

- P_{ped} reduces due to detachment
 - T_e pedestal reduced by 50%
 - n_e pedestal increases slightly

H. Wang, 62nd APS-DPP, 2020; H. Wang, 29th ITPA-DSOL, 2020

L. Wang / 28th IAEA-FEC, May 2021
DIII-D: Current density increases at large radius ($\rho = 0.6-0.7$) due to reduced P_{ped} during detachment access

- D_2 fueling detachment lowers P_{ped} height, which promotes strong ITB
 - Further evidenced by neon seeding

- **Edge current density decreases \rightarrow current density increases at large radius**
 - Decrease of magnetic shear around $\rho = 0.6-0.7$ triggers ITB
DIII-D: Formation of Strong Large-Radius ($\rho = 0.6-0.7$) ITB due to Reduced P_{ped} Height, induced by divertor detachment

- $s-\alpha$ contour plot is produced by CGYRO scan based on experimental data
 - Large radius $\rho = 0.6$, $k_0\rho_s = 0.3$, EM

 Reduction of pedestal & its current density
 - Current density at $\rho \sim 0.6$ increases
 - Magnetic shear at $\rho \sim 0.6$ decreases
 - Plasma leaves high growth rate region
 - Pressure gradient build up
 - Plasma moves into second stability regime

S. Ding, 10th US-PRC MFC Workshop, March 2021
DIII-D: Neon seeding detachment leads to more effective P_{ped} reduction and strong large-radius ITB formation

- $\beta_N > 3$, $\beta_p \sim 2.3$, $H_{98} \sim 1.4$, $f_{GW} > 1.1$, $q_{95} \sim 7$

- Neon reduces pedestal even more compared to N2 cases
 - Lower pedestal, higher ITB

- Partially detached w/ $T_{e,\text{div}} = 5$-10eV

- Steady ELM suppression + divertor detachment + high performance core
 - Reproducible ELM suppression by neon seeding

Motivation & Major Progresses

Active detachment control compatible with core

- DIII-D: fully detached high-β_p plasmas
- EAST H-mode plasmas

Summary & Near-term Plans
EAST: Achieved feedback control on degree of detachment (DoD) via j_{sat} in standard H-mode

- The feedback was achieved with two separate means, $T_{e,\text{div}} < 5\text{eV}$
 - ① LFS D2 fueling using SMBI, ② Divertor neon seeding

- Excellent compatibility with core plasma, $\Delta W_{\text{MHD}} < 10\%$
 - Neon seeding compatible with core → no confinement loss
EAST: Achieved feedback detachment control via $T_{e,\text{div}} + P_{\text{rad}}$ in grassy ELMy H-mode

- A new combined control module using Div.-LP $T_{e,\text{div}}$ & X-point radiation
 - Divertor target T_e near strike point maintained at 5-8 eV
 - $H_{98} > 1$ & plasma stored energy remains constant

G. Xu, this conference, EX/P2-872, Tue PM
G. Xu et al., Nucl. Fusion (2020) ; K. Wu et al., Nucl. Fusion (2018)
EAST: Achieved feedback control of H-mode detachment via Divertor-Te

- $T_{e,\text{div}}$ control is important for sputtering reduction
- For $T_{e,\text{div}} = 5eV$, neon is more compatible with core plasma, $H_{98} \sim 1.1$
- Argon seeded detachment induces slight confinement loss

D. Eldon, this conference, EX/P1-934, Tue AM
D. Eldon et al., Nucl. Mater. Energy (2021); D. Eldon, 24th PSI Conference, 2021

L. Wang / 28th IAEA-FEC, May 2021
EAST: Ne improves confinement facilitating steep-gradient core while Ar degrades core T_e in standard H-mode

- T_e,div control is important for sputtering reduction
- For $T_e,\text{div} = 5\text{eV}$, neon is more compatible with core plasma, $H_{98} \sim 1.1$
- Argon seeded detachment induces slight confinement loss

K. D. Li et al., Nucl. Fusion (2021, in press)
D. Eldon, this conference, EX/P1-934, Tue AM

L. Wang / 28th IAEA-FEC, May 2021
EAST: Active detachment control is used to improve core-edge integration in high β_p scenario

- $T_{et} \sim 8$ eV, $\beta_p \sim 1.8$ and $H_{98} \sim 1.1$ using Ar
 - Ar facilitates steep-gradient core and lower pedestal, different from standard H-mode in EAST
- Detachment \rightarrow weaker ETB & higher core, similar to detached high β_p scenario in DIII-D

- $\beta_p \sim 2.5$, $\beta_N \sim 2.0$, $H_{98} > 1.2$ and $q_{95} \sim 6.7$ achieved using neon seeding with more heating power [X. Gong, this conference, EX/1-TH/1-5, Tue AM]
Outline

➢ Motivation & Major Progresses

➢ Active detachment control compatible with core
 ● DIII-D: fully detached high-β_p plasmas
 ● EAST H-mode plasmas

➢ Summary & Near-term Plans
Joint DIII-D/EAST research demonstrated active control of detachment compatible with improved core plasma

- **A series of detachment control techniques for core-edge integration**
 - DIII-D&EAST: divertor J_{sat}, $T_{e,\text{div}}$, P_{rad}
 - EAST: divertor T_{IR}, $T_{e,\text{div}} + P_{\text{rad}}$, x-point

- **DIII-D: Excellent integration of full divertor detachment with high β_p**
 - High confinement core, benefits from large-radius ITB + ETB
 - $H_{98} \sim 1.5$, $T_{e,\text{div}} \leq 5\text{eV}$ across the entire target plates
 - The synergy btw. ITB+ETB improves core-edge integration

- **EAST: Partial detachment & improved core confinement in standard H-mode, grassy ELMy H-mode, high β_p scenario**
 - $H_{98} > 1$, $T_{e,\text{div}} \sim 5\text{ eV}$ around the strike point
 - Neon seeding is more compatible with core plasma, at present
Near-term Plans \(\rightarrow\) In support of ITER & CFETR

- **DIII-D: Detached high-\(\beta_p\) plasmas with \(q_{95} < 7\) & \(G > 0.2\)**
 - Full detachment + ITB + ETB + ELM suppression
 - More ITER-like single null shape

- **EAST: Stable H-mode detachment control > 100s**
 - New lower W divertor for enhanced heat and particle exhaust
 - Provide PWI solution for H-mode \(\geq 400s\)
Thank you for your attention!

Group photo in EAST control room

Group photo in DIII-D control room
Less Peaked Impurity Profile is Observed in High β_p Plasma Without ECH

- A stationary, flat carbon density profile inside the ITB
- NEO predicts peaked impurity profiles
- Experiments show no metal impurity accumulation
- GK simulation shows TEM dominant inside ITB at lower q_{95}
 - Working hypothesis: Impurity control by self-generated TEM
- ECH can further help control impurity

Garofalo, PPCF 2018
Ding, NF 2020
Qian, APS invited 2019
2D images show the peak radiation near X-point during detachment.
DIII-D experiment was performed under favorable B_T to study the compatibility of high performance core and divertor detachment

- **Upwardly Biased Quasi-Double Null with** $dR_{sep} \sim +7\text{mm} > 2\lambda_q$
 - $I_p \sim 0.72\text{MA}$

- **Ion B-gradB drift towards divertor \rightarrow favorable B_T**
 - Beneficial for full detachment

- **Impurity: Nitrogen, Neon; from divertor or main-chamber**

- **NBI only, No ECH**

- **Several actively feedback controls**
 - β_N feedback control \rightarrow adjust the P_{NBI}
 - n_{oped} feedback control \rightarrow D gas puffing

- **Diagnostics:**
 - Divertor: Langmuir probes, Bolometer, IR camera, pressure gauge, Tangential TV, Filterscope, …
 - Core: TS, CER, SPRED, VB, …
Latest experimental progress in USN (September, 2019)

- Detachment feedback control algorithm
- More closed USN configuration
 - Constant Ip~0.72 MA & Bt w/o ramping
 - Increase $\beta_N \sim 3$ & dRsep to > 5mm
- Feedforward N2 seeding $\rightarrow T_{e,\text{div}} < 5\text{eV}$
 - N2 seeding through PFX1
- Feedback detachment control with N2 seeding, GASB/PFX1
 - Target $j_{\text{sat}}/j_{\text{roll}} = 0.3$ ($T_{et} < = 5\text{eV}$)
 - Target $j_{\text{sat}}/j_{\text{roll}} = 0.6, 0.3$ in one shot
- Neon seeding for USN detachment access, & feedforward control

Stagnation point
Both impurity and D₂ fueling show the synergy between ITB and ETB

Extra bonus for core-edge integration
- Weaker ETB → benefits small ELMs → less intermittent events
- Strong ITB → high confinement → reduced P_{heat} for feedback control
- High β_p → wide pedestal → larger space between radiation cooling and pedestal top
D2+Neon puff, feedback control
EAST demonstrated **IR surface temperature control** for detachment

- IR surface temp. more directly addresses hardware limit
- Requires real-time processing of IR camera data by PCS
- RT signal used to modulate gas puff

M. W. Chen et al., *Nucl. Fusion* (2020)

L. Wang / 28th IAEA-FEC, May 2021
Active feedback control of P_{rad} to reduce heat flux

- Radiation power was actively controlled by feedback of LFS neon-SMBI seeding.
 - slight loss of plasma stored energy: 7 - 11%
 - f_{rad} extended to 41% in 2018.
- Divertor seeding exhibits much better in ctd. Expts
 ✓ Demonstration in DIII-D high β_p scenario with ITB+ETB

K. Wu et al., Nucl. Fusion (2018)

Bottom divertor upgrade (C → W, finished)

- Mission
 - H-mode ≥ 400s; 10 MW*100s
 - Divertor & PWI control Physics
 → Core-edge integration for ITER/CFETR

- W/Cu divertor with water-cooling
 - Monoblock in the strike point region (10MW/m²)
 - Flat-type structure for the dome plates (5MW/m²)

- Enhanced particle exhaust capability

- Closed outer divertor and open inner divertor for balanced detachment

- Facilitate both LSN and DN, flexible strike point

- A new divertor coil for X-divertor operation

- Plasma configuration with $\delta_L = 0.4-0.6$

- SMBI for impurity seeding feedback control

L. Wang / 28th IAEA-FEC, May 2021
Upgrade of div.-diagnostics & gas puff systems

- **1st Priority:** safety & operation oriented
- **2nd Priority:** physics oriented

<table>
<thead>
<tr>
<th>Categories</th>
<th>Div-diagnostics</th>
<th>Plasma parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat & Particle Fluxes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IR camera</td>
<td></td>
<td>Heat Flux, T_{target}</td>
</tr>
<tr>
<td>Divertor probes</td>
<td></td>
<td>ne/Te/Particle & Heat fluxes/3D</td>
</tr>
<tr>
<td>Thermal Couplers</td>
<td></td>
<td>Temperature</td>
</tr>
<tr>
<td>Neutral pressure</td>
<td></td>
<td>Neutral pressure</td>
</tr>
<tr>
<td>Impurities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visible spectroscopy</td>
<td></td>
<td>Visible spectroscopy</td>
</tr>
<tr>
<td>Bolometer</td>
<td></td>
<td>Absolute measurements of total radiation losses</td>
</tr>
<tr>
<td>EUV/VUV</td>
<td></td>
<td>High-Z impurity emission</td>
</tr>
<tr>
<td>Divertor LIBS/LIAS</td>
<td></td>
<td>Retention & wall analysis</td>
</tr>
<tr>
<td>Phys. & PMI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reflectometry</td>
<td></td>
<td>ne profile & turbulence</td>
</tr>
<tr>
<td>Edge Current Actuator</td>
<td></td>
<td>SOL current filaments</td>
</tr>
</tbody>
</table>

- **Div-gas puff locations**
 - Normal fast valves
 - New div-SMBI
 - Impurity, Fueling

L. Wang / 28th IAEA-FEC, May 2021
Joint DIII-D/EAST research on core-edge-divertor integration

- **EAST**: ITER-like tungsten divertor for long pulse operation, RF heating, FB
- **DIII-D**: High performance plasma, **bottom open & top closed** divertors