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Optimizing divertor geometry is a promising way to explore 
the boundary solution critically for future fusion reactors

• Boundary/PMI will be a critical issue for next-step devices
– Control of divertor and wall heat and particle load is needed

• Increasing divertor closure enhances the divertor
neutral trapping and divertor recycling
• Facilitate the achievement of divertor detachment  

Leonard PPCF 2018; Asakura JNM 1997; Lipschultz FST 2007; Kallenbach NF 2009; Loarte PPCF 2001
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SAS is motivated to enhance power dissipation through concentrating 
particles to high heat flux regions with advanced target shaping

Small target angle in 
near-SOL: directs recycling 
neutrals to the strike point, 
enhance dissipation

Progressive slot opening 
toward far-SOL: reflects
neutrals into the near-SOL 
extending dissipation across 
target

Guo NF 2017; Sang PPCF; Guo NF 2019

SAS: Small-angle-slot divertor
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However, divertor drift flows could alter divertor recycling 
and significantly affect the divertor behaviors 

Small target angle in 
near-SOL: directs recycling 
neutrals to the strike point, 
initiating detachment

Progressive slot opening 
toward far-SOL: reflects
neutrals into the near-SOL 
extending dissipation across 
target

Ø Strong divertor E×B drift flow in H-mode 
plasmas
• Er ~3!Te ~3Te/"qfx
• E# ~f(!//Te, !//Pe, J)

• Poloidal drift flow comparable with 
recycling flow:  Er/B ~ Cs B#/B

• Radial drift flow comparable or 
dominant than diffusion flow at 
dissipative divertor

Guo NF 2017; Sang PPCF; Guo NF 2019
Jaervinen NME 2019; Boedo PoP 2000; Chankin JNM 1997

SAS: Small-angle-slot divertor
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However, divertor drift flows could alter divertor recycling 
and significantly affect the divertor behaviors 

Small target angle in 
near-SOL: directs recycling 
neutrals to the strike point, 
initiating detachment

Progressive slot opening 
toward far-SOL: reflects
neutrals into the near-SOL 
extending dissipation across 
target

Ø Strong divertor E×B drift flow in H-mode 
plasmas
• Er ~3!Te ~3Te/"qfx
• E# ~f(!//Te, !//Pe, J)

• Poloidal drift flow comparable with 
recycling flow:  Er/B ~ Cs B#/B

• Radial drift flow comparable or 
dominant than diffusion flow at 
dissipative divertor

Guo NF 2017; Sang PPCF; Guo NF 2019
Jaervinen NME 2019; Boedo PoP 2000; Chankin JNM 1997

SAS: Small-angle-slot divertor

Ø The interplay between divertor drift flows and geometry 
plays important roles on the divertor dissipation
• Drift could offset the geometrical effects to either 

enhance or reduce divertor dissipations
• Geometry+drift change the trajectory of divertor

dissipation
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A compact small-angle-slot divertor was installed in 
DIII-D as a testbed for exploration of divertor solutions

ØSmall tile changes à compact SAS

ØSystematical divertor diagnostics suite
Ø LP, DTS, PG, SETC

ØMain experimental approaches
• 4MW, 1MA H-mode plasmas
• Changing/sweeping the strike point
• Density ramping up for detachment
• Reversing BT to change divertor drift flow 

for studying drift effects

ØSOLPS-ITER simulations with full drifts for 
Experiment-model validation and further 
detailed physics study

Watkins NME 2019, RSI 2020; Shafer NME 2019; 
Ren RSI 2020; Guo NF 2019; Moser APS 2020
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Optimal strike point location at outer corner with low Te
and heat flux was identified in experiment
B×∇B away from SAS

Ø Strike point sweeps at fixed density

Ø When SP @ outer corner, flat and 
low Te ~10eV across divertor target
o Desired for material erosion control

Ø Also low heat flux measured by 
both LP and SETC
o Same for another BT direction

Ø3x higher Te and 2x higher heat flux 
when SP at slanted target
• Geometry effects
• Neutral less concentrated at peak 

heat flux region

Ren APS 2019; Ren NME 2021; Guo NF 2019 

SE
TC

10eV
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Te Probes (near Strike point) Te DTS (mid SOL)

With Ion B´ÑB Drift away Xpt, low Te is achieved at low 
main plasma densities

Ø Low Te<10eV for both near strike point and mid SOL measurements
• But not deep detachment and not strong molecular recombination

Ø Jsat rollover occurs higher density
• Jsat rollover à particle and momentum loss 

Jsat Probes (near Strike point)

!n~1.01!n~1.003
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Te Probes (near Strike point) Te DTS (mid SOL)

However, Ion B´ÑB Drift toward Xpt offsets geometric 
effects ➔ Requiring higher density to achieve low Te

Jsat Probes (near Strike point)

ØDivertor plasma remains hot near the SP throughout SOL until detachment 
onset at high density, (!", $%&~(. *+×(-(./01)

• Different Te-transition density from that at open divertor: ~10% between different BT

• Strong detachment with low Te<5eV and low Jsat can be achieved

Jaervinen PRL 2018

2n~1.012n~1.003
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Te Probes (near Strike point) Te DTS (mid SOL)

SOLPS-ITER simulations with full drifts reproduces the similar 
trends in experiments

ØAssuming nesep~ 0.3 ne, for matching the experiment and simulations
ØSOLPS simulations with drifts overestimates the particle flux by 3x

• May relate to -- constant divertor transport D&!, radiation shortfall
• Recent simulations with matched profiles shows similar behavior and better 

agreement 

Jsat Probes (near Strike point)

Maurizio, to be submitted to NF

"n~1.01"n~1.003
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Divertor conditions are consistent with neutral behavior, 
with quantitatively consistent simulations and experiments

• Neutral flux in the SOL  for the other BT is 
much (2X) smaller up to deep 
detachment
– Previous modeling without drift shows one 

order of magnitude higher neutral flux →
significance of drifts

• Neutral recycling and behaviors could be 
strongly affected by the flows and 
geometry
– Found in both experiments and simulations

X. Ma, NF 2021; M.W. Shafer, NME 2019; Stangeby NF 2017; Kallenbach NME 2019; Pitts NME 2019

"n~1.011

B×∇B toward Xpt

B×∇B away from Xpt

D, D2
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Simulations suggest strong coupling between the 2-D drift 
flows and divertor geometry

X. Ma, NF 2021

• Simulations show similar profiles features 
observed in experiments

• B×∇B away from Xpt: Low and flat Te
– Small Te radial gradient à Small Er

– Large Te parallel gradient à Large E"

• B×∇B toward Xpt: High Te across separatrix
– Strong Te radial gradient à Strong Er

– Medium Te parallel gradientà Med E"
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• Simulations show similar profiles features 
observed in experiments

• B×∇B away from Xpt: Low and flat Te
– Small Te radial gradient à Small Er

– Large Te parallel gradient à Large E"
– PFR ErxB moves particles to outer div.
– Radial E"xB moves particles towards SOL
à High flux and low Te

• B×∇B toward Xpt: High Te across separatrix
– Strong Te radial gradient à Strong Er

– Medium Te parallel gradientà Med E"
– ErxB moves particles away from SOL
– E"xB moves particles from SOL to PFR
à Low flux and high Te

• Both are positive feedbacks driving divertor 
plasma away or closer to detachment

Simulations suggest strong coupling between the 2-D drift 
flows and divertor geometry



14
H.Q. Wang/ IAEA-FEC 2021

X. Ma, NF 2021

• Total flow Vtotal includes drift flow, 
poloidal projection of parallel flow, 
diffusion flows

• B×∇B away from Xpt: Low and flat Te
– ExB drift flow same direction as main 

plasma flow à larger total flow

• B×∇B toward Xpt: High Te across separatrix
– ExB drift flow opposite direction as main 

plasma flow à weaker total flow
– Even reversal near the strike point
– Er/B ~ Cs B"/B

Simulations suggest comparable amplitude between drift 
flows and main plasma flow
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The coupling between drift and geometry could alter the 
path towards divertor detachment

B×∇B away from Xpt Ø Te-cliff-like transition for B×∇B away from Xpt, for 
strike point at the slanted target
• With open divertor, Te cliff only found with B×∇B 

into divertor

Ø Inner slant exhibits higher Te till detachment
• Slanted target directs the neutral away the SP

ØParticle flux shows up-down-up trend
• Jsat dip at high Te

Jaervinen, PRL 2018; NF 2020; NME 2019
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Jaervinen, PRL 2018; NF 2020; NME 2019

B×∇B away from SAS

The coupling between drift and geometry could alter the 
path towards divertor detachment

Ø Te-cliff-like transition for B×∇B away from Xpt, for 
strike point at the slanted target
• With open divertor, Te cliff only found with B×∇B 

into divertor

Ø Inner slant exhibits higher Te till detachment
• Slanted target directs the neutral away the SP

ØParticle flux shows up-down-up trend
• Jsat dip at high Te

ØSOLPS-ITER simulations reproduce similar trend 
for both Te and particle flux
• Match upstream profiles but constant div. D, "

• Better agreement compared to previous
• Not fully reproduce Te-cliff yet
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Ø Drift is amplified by 
strong gradient 
between slant and slot

Ø Jsat dip correlates to 
peak drift flows

Ø 50% Jsat change 
confirms the equal 
importance of drift flow 
and main flow

Ø Reduction or reversal of 
drift flows à particle 
accumulations at SP 
àTe-cliff-like reduction

Wang, PRL 2020

B×∇B away from SAS

The evolution of particle flux strongly correlates with the 
dynamics of divertor drift flows near target plate

To plate

To plate
Away plate

Away plate

SOLPS-ITER
near SOL

ErxB

E"xB

D



18
H.Q. Wang/ IAEA-FEC 2021

Implications: optimize the target shaping to manipulate 
ExB drifts to improve detachment for both BT directions

Ø SAS-V: Slanted surface in the PFR directs 
recycling flux towards the common SOL 

Du NF 2021; Guo APS 2020

Enhance neutral/particle buildup

Lower Te and Er Reduce ErxB

Ø SAS-V: Low Te in both BT directions
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DIII-D plans to test SAS-V concept to further investigate the 
interplay between drifts and geometry

Ø SAS-V: Slanted surface in the PFR directs 
recycling flux towards the common SOL 

Du NF 2021; Guo APS 2020

Enhance neutral/particle buildup

Lower Te and Er Reduce ErxB

Ø SAS-V: Low Te in both BT directions

Ø DIII-D SAS-V: Further model validation, 
impurity transport in closed divertor, 
core-edge integration

SAS-V
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• DIII-D SAS divertor provides a good opportunity for model validation 
and exploration of divertor solution

• The interplay between divertor drift flows and geometry plays 
important roles on the divertor dissipation
– Drift offsets the geometry effects to either enhance or reduce the 

anticipated geometric effects
– Geometry+drift alters the trajectory of divertor dissipation 

• The coupling between drift and geometry needs to be taken 
seriously into account in future divertor design, in particular for 
fusion reactors
– High power and high current in reactors may strongly enhance divertor

drift flows

Summary
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Thank you for your attentions!!
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