The Effect of Synergy Between Divertor Geometry and Drifts on Divertor Power Dissipation in the DIII-D Small Angle Slot Divertor

by

H.Q. Wang¹, X. Ma², H.Y. Guo¹, D.M. Thomas¹, P.C. Stangeby³, E.T. Meier⁴, M.W. Shafer⁵, T. Osborne¹, A. L. Moser¹, J. G. Watkins⁶, J. Ren⁷, R. Maurizio²

¹General Atomics
²Oak Ridge Associated Universities
³University of Toronto
⁴University of Washington
⁵Oak Ridge National Laboratory
⁶Sandia National Lab
⁷University of Tennessee, Knoxville

Small Angle **Slot Divertor Gas-Tight Slot** lasma Ethaus Small **Angle Target**

To be presented at the

28th IAEA FEC Remote

May 10-15, 2021

EX-7/927

Optimizing divertor geometry is a promising way to explore the boundary solution critically for future fusion reactors

Boundary/PMI will be a critical issue for next-step devices
 Control of divertor and wall heat and particle load is needed

 Increasing divertor closure enhances the divertor neutral trapping and divertor recycling

• Facilitate the achievement of divertor detachment

Leonard PPCF 2018; Asakura JNM 1997; Lipschultz FST 2007; Kallenbach NF 2009; Loarte PPCF 2001

SAS is motivated to enhance power dissipation through concentrating particles to high heat flux regions with advanced target shaping

SAS: Small-angle-slot divertor

Φ

 Φ_0

Progressive slot opening

toward far-SOL: reflects neutrals into the near-SOL extending dissipation across target

Small target angle in

near-SOL: directs recycling neutrals to the strike point, enhance dissipation

Guo NF 2017; Sang PPCF; Guo NF 2019

SAS

However, divertor drift flows could alter divertor recycling and significantly affect the divertor behaviors

SAS: Small-angle-slot divertor

Φ

Guo NF 2017; Sang PPCF; Guo NF 2019

 Φ_0

Progressive slot opening toward far-SOL: reflects neutrals into the near-SOL extending dissipation across target

Small target angle in

near-SOL: directs recycling neutrals to the strike point, initiating detachment

- Strong divertor E×B drift flow in H-mode plasmas
 - $E_r \sim 3\nabla T_e \sim 3T_e / \lambda_q f_x$
 - $E_{\theta} \sim f(\nabla_{//}T_e, \nabla_{//}P_e, J)$
- Poloidal drift flow comparable with recycling flow: E_r/B ~ C_s B_θ/B
- Jaervinen NME 2019; Boedo PoP 2000; Chankin JNM 1997 Radial drift flow comparable or dominant than diffusion flow at dissipative divertor

SAS

However, divertor drift flows could alter divertor recycling and significantly affect the divertor behaviors

SAS: Small-angle-slot divertor

Progressive slot opening

- The interplay between divertor drift flows and geometry plays important roles on the divertor dissipation
 - Drift could offset the geometrical effects to either enhance or reduce divertor dissipations
 - Geometry+drift change the trajectory of divertor dissipation

Ε_θ~Ι(V//Ιε, V//Γε, J)

Guo NF 2017; Sang PPCF; Guo NF 2019 Iaervinen NME 2019; Boedo PoP 2000; Chankin JNM 1997

 Poloidal drift flow comparable with recycling flow: E_r/B ~ C_s B_θ/B

Radial drift flow comparable or dominant than diffusion flow at dissipative divertor

SAS

A compact small-angle-slot divertor was installed in DIII-D as a testbed for exploration of divertor solutions

Watkins NME 2019, RSI 2020; Shafer NME 2019; Ren RSI 2020; Guo NF 2019; Moser APS 2020 \succ Small tile changes \rightarrow compact SAS

Systematical divertor diagnostics suite
 LP, DTS, PG, SETC

> Main experimental approaches

- 4MW, 1MA H-mode plasmas
- Changing/sweeping the strike point
- Density ramping up for detachment
- Reversing $B_{\rm T}$ to change divertor drift flow for studying drift effects
- SOLPS-ITER simulations with full drifts for Experiment-model validation and further detailed physics study

Optimal strike point location at outer corner with low $\rm T_e$ and heat flux was identified in experiment

B×∇B away from SAS

- Strike point sweeps at fixed density
- When SP @ outer corner, flat and low T_e ~10eV across divertor target

• Desired for material erosion control

Also low heat flux measured by both LP and SETC

 $\circ~$ Same for another B_T direction

Sx higher T_e and 2x higher heat flux when SP at slanted target

- Geometry effects
- Neutral less concentrated at peak heat flux region

Ren APS 2019; Ren NME 2021; Guo NF 2019

H.Q. Wang/ IAEA-FEC 2021

With Ion $B \times \nabla B$ Drift away Xpt, low T_e is achieved at low main plasma densities

> Low T_e<10eV for both near strike point and mid SOL measurements

But not deep detachment and not strong molecular recombination

J_{sat} rollover occurs higher density

• J_{sat} rollover \rightarrow particle and momentum loss

However, Ion $B \times \nabla B$ Drift toward Xpt offsets geometric effects \rightarrow Requiring higher density to achieve low T_e

Divertor plasma remains hot near the SP throughout SOL until detachment onset at high density, (n_{e, sep}~1.75×10¹⁹m⁻³)

- Different T_e-transition density from that at open divertor: ~10% between different B_T
- Strong detachment with low T_e <5eV and low J_{sat} can be achieved

SOLPS-ITER simulations with full drifts reproduces the similar trends in experiments

Assuming n_{esep}~ 0.3 n_e, for matching the experiment and simulations
 SOLPS simulations with drifts overestimates the particle flux by 3x

- May relate to -- constant divertor transport $D\&\chi$, radiation shortfall
- Recent simulations with matched profiles shows similar behavior and better agreement

Divertor conditions are consistent with neutral behavior, with quantitatively consistent simulations and experiments

- Neutral flux in the SOL for the other B_T is much (2X) smaller up to deep detachment
 - Previous modeling without drift shows one order of magnitude higher neutral flux → significance of drifts
- Neutral recycling and behaviors could be strongly affected by the flows and geometry
 - Found in both experiments and simulations

Simulations suggest strong coupling between the 2-D drift flows and divertor geometry

- Simulations show similar profiles features observed in experiments
- **B**× ∇ **B** away from Xpt: Low and flat T_e
 - Small T_e radial gradient \rightarrow Small E_r
 - Large T_e parallel gradient \rightarrow Large E_{θ}

- **B**× ∇ **B** toward Xpt: High T_e across separatrix
 - Strong T_e radial gradient \rightarrow Strong E_r
 - Medium T_e parallel gradient \rightarrow Med E_{θ}

Simulations suggest strong coupling between the 2-D drift flows and divertor geometry

- Simulations show similar profiles features observed in experiments
- **B**× ∇ **B** away from Xpt: Low and flat T_e
 - Small T_e radial gradient \rightarrow Small E_r
 - Large T_e parallel gradient \rightarrow Large E_{θ}
 - PFR E_rxB moves particles to outer div.
 - Radial $E_{\theta}xB$ moves particles towards SOL
 - $\rightarrow~$ High flux and low $\rm T_e$

B×∇**B** toward Xpt: High *T*_e across separatrix

- Strong T_e radial gradient \rightarrow Strong E_r
- Medium T_e parallel gradient \rightarrow Med E_{θ}
- ErxB moves particles away from SOL
- $E_{\theta}xB$ moves particles from SOL to PFR
- \rightarrow Low flux and high $\rm T_e$
- Both are positive feedbacks driving divertor plasma away or closer to detachment

Simulations suggest comparable amplitude between drift flows and main plasma flow

- Total flow V_{total} includes drift flow, poloidal projection of parallel flow, diffusion flows
- **B**× ∇ **B** away from Xpt: Low and flat T_e
 - ExB drift flow same direction as main plasma flow → larger total flow

- **B×∇B toward Xpt**: High *T*_e across separatrix
 - ExB drift flow opposite direction as main plasma flow → weaker total flow
 - Even reversal near the strike point
 - $E_r/B \sim C_s B_{\theta}/B$

The coupling between drift and geometry could alter the path towards divertor detachment

- T_e-cliff-like transition for B×VB away from Xpt, for strike point at the slanted target
 - With open divertor, T_e cliff only found with B×∇B into divertor

\succ Inner slant exhibits higher T_e till detachment

• Slanted target directs the neutral away the SP

Particle flux shows up-down-up trend

• J_{sat} dip at high T_e

Jaervinen, PRL 2018; NF 2020; NME 2019

The coupling between drift and geometry could alter the path towards divertor detachment

- T_e-cliff-like transition for B×VB away from Xpt, for strike point at the slanted target
 - With open divertor, T_e cliff only found with $B \times \nabla B$ into divertor

\succ Inner slant exhibits higher T_e till detachment

• Slanted target directs the neutral away the SP

Particle flux shows up-down-up trend

J_{sat} dip at high T_e

SOLPS-ITER simulations reproduce similar trend for both T_e and particle flux

- Match upstream profiles but constant div. D, χ
 - Better agreement compared to previous
- Not fully reproduce T_e -cliff yet

Jaervinen, PRL 2018; NF 2020; NME 2019

The evolution of particle flux strongly correlates with the dynamics of divertor drift flows near target plate

- Drift is amplified by strong gradient between slant and slot
- J_{sat} dip correlates to peak drift flows
- 50% J_{sat} change confirms the equal importance of drift flow and main flow
- ➢ Reduction or reversal of drift flows → particle accumulations at SP →T_e-cliff-like reduction

H.Q. Wang/ IAEA-FEC 2021

Implications: optimize the target shaping to manipulate ExB drifts to improve detachment for both B_T directions

> SAS-V: Low T_e in both B_T directions

Du NF 2021; Guo APS 2020 H.Q. Wang/ IAEA-FEC 2021

DIII-D plans to test SAS-V concept to further investigate the interplay between drifts and geometry

SAS-V: Slanted surface in the PFR directs recycling flux towards the common SOL

> SAS-V: Low T_e in both B_T directions

DIII-D SAS-V: Further model validation, impurity transport in closed divertor, core-edge integration

19

Summary

- DIII-D SAS divertor provides a good opportunity for model validation and exploration of divertor solution
- The interplay between divertor drift flows and geometry plays important roles on the divertor dissipation
 - Drift offsets the geometry effects to either enhance or reduce the anticipated geometric effects
 - Geometry+drift alters the trajectory of divertor dissipation
- The coupling between drift and geometry needs to be taken seriously into account in future divertor design, in particular for fusion reactors
 - High power and high current in reactors may strongly enhance divertor drift flows

Thank you for your attentions!!

