

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

ID: IAEA-CN-EX/6-3

Electron heated plasmas in Wendelstein 7-X and ASDEX Upgrade; necessity to control turbulent transport

M.N.A. Beurskens, C. Angioni¹, S. Bozhenkov, O. Ford, G. Fuchert, C Kiefer¹, J. Stober¹, P. Xanthopoulos, Y. Turkin, J.A. Alcusón, J. Baldzuhn, C. Beidler, G. Birkenmeier¹, R. Burhenn, A. Dinklage, E. Fable¹, B Geiger¹, O. Grulke, M. Hirsch, M. Jakubowski, H. Laqua, S. Lazerson, M. Reisner¹, P. Schneider¹, E. R. Scott, T. Stange, A. von Stechow, U. Stroth¹, F. Warmer, Th. Wegner, G. Weir, D. Zhang, R.C. Wolf, H. Zohm¹, the Wendelstein 7-X, the ASDEX-upgrade, and the MST1 teams.

Max-Planck Institut für Plasmaphysik, EURATOM Association, Greifswald, Germany

¹Max-Planck Institut für Plasmaphysik, EURATOM Association, Garching, Germany

Magnetic confinement concepts

ASDEX Upgrade : Tokamak (2D)

Wendelstein 7-X: Stellarator (3D)

- current $I_p \sim 1 \text{ MA}$
- a = 0.5 m, R= 1.6 m, B = 2.5T
- $P_{ECRH} = 5 MW$
- low neoclassical transport

- No induced plasmas current
- a = 0.5 m, R= 5 m, B = 2.5T
- P_{ECRH} = 7 MW (15 MW envisaged)
- Optimised neocl. transport *E_{eff} < 1%*

Electron heated plasma

- ECRH electron heating is very localised
- Ion heating (exchange power) is broad, $p_{ei} \sim \frac{n_e^2 (T_e T_i)}{T_e^{3/2}}$

Electron heated plasma

- ECRH electron heating is very localised
- Ion heating (exchange power) is broad
- In a reactor alpha heating will predominantly heat electrons...
- \rightarrow e-heated plasma performance important to study!

- Ion temperature T_i -clamping in both devices: $T_i \le 1.5$ keV
 - Low exchange power with broad ion heating profile?
- Under these conditions, turbulent tranport is dominant
 - Which type of turbulence is at play? Profile stiffness?

In electron heated L-mode plasmas of ASDEX Upgrade and Wendelstein7-X, the ion temperature clamps at $T_i \sim 1.5$ keV, independent of magnetic configuration:

- The ions are heated by energy exchange $p_{ei} \sim n_e^2 (T_e T_i)/T_e^{3/2}$, which offers a broad ion heating profile only where $T_e/T_i > 1$.
- Heat transport due to ITG/TEM turbulence is strongly exacerbated as $T_e/T_i > 1$ even at small positive ϵ with $T_e/T_i = 1 + \epsilon$
- The resulting "stiff" core transport leads to T_i-clamping.

To remedy the impact of clamping, tokamaks and stellarators either feature:

- 1. an **H-mode** with a strong **edge pedestal** to lift the "stiff" core T_i profiles
- 2. **suppressed or reduced core turbulence** by means of:
 - i. Fast ions stabilisation (tokamaks and stellarators)
 - ii. Enhanced density gradients (stellarators and negative-magn.-shear-tokamak)
 - iii. Designing turbulence-resilient-configurations with e.g. negative triangularity tokamaks or e.g. low elongation in stellarators.

Key findings of this work

In electron heated plasmas :

- T_i -clamping at ~ 1.5 keV occurs independent of magnetic configuration.
- Ion are heated through exchange power as $T_e/T_i > 1$.
- At the same time clamping puts a stronger contraint on T_i than profile stiffness as T_e/T_i
 > 1 exacerbates ITG/TEM turbulence.
- Therefore, in practical terms T_i-clamping leads to an <u>apparent</u> strongly "stiff" core transport in both AUG and W7-X

 $T_e/T_i \le 1$ reduces tranport, but is not possible.

 \rightarrow therefore T_i clamping is unavoidable in electron heated plasmas

To remedy the impact of clamping, tokamaks and stellarators either feature:

- 1. an H-mode with strong **edge pedestal** to lift the "stiff" core T_i profiles
- 2. **suppressed or reduced** core turbulent transport by means of:
 - i. Fast ions stabilisation (tokamaks and stellarators)
 - ii. Enhanced density gradients (stellarators and negative-magnetic-shear-tokamak)
 - iii. Negative triangularity (tokamaks only exploratory)

W7-X: neoclassical transport overestimates performance

Wendelstein 7-X:

Comparing NC to experiment:

- P_{ECRH} = 4MW, n_{e,0} = 7e19 m⁻³
- Central ECRH deposition
- Edge radiation assumed

Experiments result:

T_{i,0} ~ 1.6 keV

Neoclassical transport simulation:

T_{i,0} ~ 3.0 keV

configuration independent gyroBohm transport

- NTSS simulations: $\chi_{turb} \gg \chi_{neo}$, Vary P_{ECRH}=1-5 MW and n_e=10¹⁹ 10²⁰ m⁻³
- GyroBohm ion diffusivity: $\chi_{i,gB} = \sqrt{\frac{m_i}{e} \frac{T_i^{3/2}}{aB^2}}$, (electrons: $\chi_{e,turb}$ = constant)
- Tried in AUG and W7-X configurations \rightarrow clamping is configuration independent:
 - Due to broad ion heating profile (exchange power)
 - Large anomalous transport

Expectations for ion turbulent heat transport

• Ion heat transport can be driven by Ion Temperature Gradient (ITG) or trapped electron modes (TEM)

Wendelstein 7-X

ASDEX Upgrade

• Both devices may also feature a strong T_e/T_i drive for ion transport

- Steps down P_{ECRH}= 3.9 1.2 MW
- T_e varies $3 \rightarrow 1.3$ keV
- T_i varies 1.7 \rightarrow 1.2 keV
- n_e is virtually constant at 7 10¹⁹ m⁻³

With increasing Р _{ескн}	r/a = 0.3	r/a = 0.6
Er	ion root	ion root
$Q_{i,turb} = Q_{i,exp} - Q_{i,NC}$	0.1 - 0.5 MW	0.1 - 1 MW
T _e /T _i		
a/L _{Ti}		
a/L _n		

- Avoid root transitions for accuracy of Q_{i,turb}
- Turbulent tranport dominates: Q_{i,turb} >> Q_{i,NC}

With increasing P _{ECRH}	r/a = 0.3	r/a = 0.6
Er	ion root	ion root
$Q_{i,turb} = Q_{i,exp} - Q_{i,NC}$	0.1 - 0.5 MW	0.1 - 1 MW
T _e /T _i	increases 1 - 1.3	constant 1
a/L _{Ti}	decreases 2 - 1	increases $1.5 \rightarrow 2.5$
a/L _n	a/L _n << a/L _{Ti}	a/L _n << a/L _{Ti}

- Profiles of a/L_{Ti} cross over at r/a[~] 0.5
- This intersects with radius from where $T_e/T_i = 1$

- At r/a = 0.3 we find a reduction of a/L_{Ti} with increasing $Q_{i,turb}$
- At r/a = 0.6, a/L_{Ti} increases with increasing $Q_{i,turb}$

- At r/a = 0.3, both T_e/T_i and clamping increases (jump curves)
- At r/a = 0.6, as $T_e/T_i = 1$, the stiffness = constant (stay on curve)

- Large variation of T_e , clamping of $T_i < 1.5$ keV in L-mode H2 plasmas
- Q_i varied by factor 3

AUG power scan experiment in D₂ (H-mode)

- Tokamak L-H transition can help enhance T_{i,0} as pedestal lifts the core
- Although local gradients remain the same (or reduce somewhat)

Clamping due to turbulent tranport

- Ion temperature gradient clamped at a/L $_{\rm Ti}$ $^{\sim}$ 2
- Variation of T_e/T_i from 1.5-3.5 enhances clamping (this is not infinite stiffness!)
- Issue for L-mode tokamak fusion reactor \rightarrow impact on size requirement
- H-mode performance almost fully depends on the achievable pedestal

ASTRA-TGLF simulations: **TEM** or **ITG** dominant

Using ASTRA-TGLF simulations with quasi-linear gyrokinetic calculations

- Depending on collissionality either TEM or ITG is the dominant micro-instability
- Both instabilities feature enhanced stiffness with increasing T_e/T_i

- ASTRA-TGLF simulations show good quantitative agreement of core transport (pedestal from experiment):
 - With some systematic deviations
- L-mode plasmas: clamping effect is reproduced for $T_e/T_i < 3$
- H-mode plasmas: TGLF penalises T_e/T_i stronger than experiment

[F. Ryter et al 2019 Nucl. Fusion 59 096052]

In controlled profile experiment (NBI and ECRH deposition scan)

- with T_e/T_i = constant: much wider variation of a_{eff}/L_{Ti} = 1.5 3
- Here also, jumping curves when T_e/T_i changes enhances clamping.

T_i clamping is independent of configuration!

Strong T_i-clamping is equally found in AUG and W7-X electron heated plasmas.

For tokamaks:

- Strong limitation on L-mode reactor (constraint on size!)
- H-mode operation may be a necessity (pedestal lifts core)
- Also beneficial effect of fast particle stabilisation and/or neg. triangularity concepts to be explored

For Stellarators (HELIAS):

- H-modes with good confinement still to be found. (J. Geiger this conference)
- Core turbulence suppression is possible through density gradient: "Stability valey" thanks to maximum-J configuration (T.S. Pedersen this conference)

Example of turbulence suppression scenario

Post pellet experiments confirm reduced turbulence scenario:

- Enhanced density gradients $a/L_n \sim a/L_{Ti}$ help suppress ITG turbulence
- T_i clamping is (transiently) broken to get $T_i = 3 \text{ keV}$

In W7-X we will attempt to make this a steady scenario and explore enhanced performance with new cryo pumps and a new continuous pellet injector

Example of turbulence suppressed scenario

Wendelstein 7-X vs tokamak stability map

• Linear gyrokinetic simulations show "Stability valley"

Post pellet experiments confirms reduced turbulence scenario: T_i = 3keV

Key findings of this work

In electron heated L-mode plasmas of ASDEX Upgrade and Wendelstein7-X, the ion temperature clamps at $T_i \sim 1.5$ keV, independent of magnetic configuration:

- The ions are heated by energy exchange $p_{ei} \sim n_e^2 (T_e T_i)/T_e^{3/2}$, which offers a broad ion heating profile only where $T_e/T_i > 1$.
- Heat transport due to ITG/TEM turbulence is strongly exacerbated as $T_e/T_i > 1$ even at small positive ϵ with $T_e/T_i = 1 + \epsilon$
- The resulting "stiff" core transport leads to T_i-clamping.

To remedy the impact of clamping, tokamaks and stellarators either feature:

- 1. an **H-mode** with a strong **edge pedestal** to lift the "stiff" core T_i profiles
- 2. **suppressed or reduced core turbulence** by means of:
 - i. Fast ions stabilisation (tokamaks and stellarators)
 - ii. Enhanced density gradients (stellarators and negative-magn.-shear-tokamak)
 - iii. Designing turbulence-resilient-configurations with e.g. negative triangularity tokamaks or e.g. low elongation in stellarators.

IAEA-CN-EX/6-3