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Introduction

In the gyro-kinetic simulation, two states of 1sotope particle transport can be expected in the
1sotope mixture plasmas, where 1sotope species has a freedom in the quasi-neutral condition.

ITG dominant state Di> De (large 1on particle transport)

—> Radial density profile of different isotope species becomes identical regardless of isotope

source location (Isotope mixing)
TEM dominant state De > D1 (small 1on particle transport)

—> Radial density profile of different isotope species becomes different depending on isotope

source location (Isotope non-mixing)
reference: C.Bourdelle et. al., Nucl. Fusion 58 (2018) 076028

The 1sotope source location 1s electron

controlled by Wall

1 core H/D beam fueling fleCYChIlg

2 edge H/D pellet fueling

3 SOL H/D wall recycling |

to study the relation between 1sotope pellet Gas puff and

mixing and turbulence fueling (D) recycling (D)

crucial issue in D-T plasma.
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Isotope ratio 1nside plasma 1s measured with bulk charge

exchange spectroscopy

The charge exchange lines are fitted with four
Gaussians (H, D cold and hot components) by

reducing the free parameters from12 to 5
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Turbulence states are measured with phase contrast imaging

Example of frequency spectrum of density turbulence measured phase

contrast imaging (PCI)

There are two peaks of turbulence spectrum

observed.
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Depending on the parameter
regime, only low frequency
peak or high frequency peak
appears.

For example

Low density ECH plasma

= high f peak (60 ~ 90 kHz)
high density NBI plasma

- low f peak (~20kHz)



Density dependence of 1sotope mixing and non-mixing transition

Lower density = peaked ny/(n;;+tnp) =2 isotope non-mixing

Higher density > flat ny/(ny+np) = isotope mixing
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Characteristics of density fluctuation

isotope non-mixing 3 mixing
fluctuation peak 80 kHz % 1
intrinsic toroidal flow in co-direction ~ “

1sotope mixing
fluctuation peak 25 kHz
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Growth rate of turbulence predicted by gyrokinetic
simulation code 1s consistent with the observations

Growth rate calculated by gyrokinetic simulation GKV
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Impact of Te/T1 ratio on 1sotope mixing and non-mixing

ECH plasma > Te/Ti >1
- 80 kHz fluctuation peak clearly
appears
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NBI plasma = Te/Ti~ 1
- 80 kHz fluctuation peak disappears
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Impact of density gradient on 1sotope mixing and non-mixing

Faster density ramp-up = isotope mixing = No 60 kHz fluctuation peak is observed
Slower den51ty ramp-up 9 _isotope non mixing = 60 kHz ﬂuctuat10n peak appears
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Control of mixing and non-mixing state by H/D pellet injection
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After H-pellet injection

- Flattening of ny/(nytnp) profile 2 mixing
—> 80 kHz fluctuation peak disappears

After D-pellet injection

- Flattening of ny/(nytnp) profile 2 mixing
—> 80 kHz fluctuation peak disappears

ExB flow velocities are almost unchanged
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Mixing state after pellet injection 1s transient

After pellet injection

- Increase of fluctuation is transient ( < 50 ms)

- The peaking of H-fraction ny/(ng+np) starts
after the decay of density fluctuation

—> Time scale of H-fraction peaking is > 100ms
as expected by the beam fueling rate
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Summary

Parameter regime for isotope non-mixing and mixing are investigated
Characteristics of density fluctuation in the non-mixing and mixing state are clarified.

Parameters Non-mixing state Mixing state
Isotope density ratio Non-uniform Uniform

Electron density <2-3x 10" m™? >2-3 x10” m™?
Density gradient dn./dr <0 dn./dr >0

T./T; ratio Large (>1-2) Small (<1-2)
Peak frequency 60-90 kHz 20—-40 kHz
Intrinsic toroidal flow Co-direction Counter-direction

Stability of micro-instability (linear growth rate) is studied using gyrokinetic code GKV
Strong correlation between TEM and non-mixing state 1s suggested

Non-mixing state Mixing state

Edge reff/agg = 0.9 TEM destabilized TEM stabilized —
Core reff/agg = 0.5 ITG destabilized ITG destabilized
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