#### Performance Integration of High Temperature Plasmas in the LHD deuterium operation

<u>H. Takahashi<sup>1,2</sup></u>, K. Mukai<sup>1,2</sup>, T. Kobayashi<sup>1,2</sup>, S. Murakami<sup>3</sup>, H. Nakano<sup>1,2</sup>,
K. Nagaoka<sup>1,4</sup>, S. Ohdachi<sup>1</sup>, M. Yoshinuma<sup>1</sup>, K. Ida<sup>1</sup>, R. Yanai<sup>1</sup>, Y. Yoshimura<sup>1</sup>,
T.-I. Tsujimura1, K. Tanaka<sup>1</sup>, M. Nakata<sup>1,2</sup>, H. Yamaguchi<sup>1</sup>, R. Seki<sup>1,2</sup>, M. Yokoyama<sup>1,2</sup>,
T. Oishi<sup>1,2</sup>, Y. Kawamoto<sup>1</sup>, M. Goto<sup>1,2</sup>, T. Seki<sup>1</sup>, K. Saito<sup>1,2</sup>, H. Kasahara<sup>1</sup>, S. Kamio<sup>1</sup>,
Y. Suzuki<sup>1,2</sup>, R. Sakamoto<sup>1,2</sup>, G. Motojima<sup>1,2</sup>, M. Kobayashi<sup>1,2</sup>, I. Yamada<sup>1</sup>,
R. Yasuhara<sup>1,2</sup>, H. Funaba<sup>1</sup>, K. Ogawa<sup>1,2</sup>, M. Isobe<sup>1,2</sup>, T. Tokuzawa<sup>1,2</sup>, A. Ejiri<sup>5</sup>,
M. Osakabe<sup>1,2</sup>, T. Morisaki<sup>1,2</sup>, Y. Takeiri<sup>1,2</sup> and the LHD experiment group<sup>1</sup>

 National Institute for Fusion Science, National Institutes of Natural Sciences, Gifu, Japan 2. Department of Fusion Science, School of Physical Sciences The Graduate University for Advanced Studies, SOKENDAI, Gifu, Japan 3. Department of Nuclear Engineering, Kyoto University, Kyoto, Japan 4. Department of Physics, Nagoya University, Nagoya, Japan 5. Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan

# **Introduction**

## Introduction

- $\succ$  In the LHD, the D experiment was initiated in March 2017.
  - -> (1) Higher performance plasmas, (2) Isotope effect, (3) High energy ion.
- Important goal:
  - -> Demonstrate the scientific feasibility of helical-system rector;
    - Optimizing plasma performance,
    - Development of operation scenario,
    - Comprehensive understanding of physics.
- The presentation shows the recent LHD results of the high-performance plasma experiments;
  - (1) The performance integration and the optimization of high temperature plasmas.
    - -> High  $T_i$  and high  $T_e$ , e-ITB with detachment, SSO of e-ITB.
  - (2) Thermal confinement of plasmas, of which  $T_i$  and  $T_e$  are simultaneously high.



# <u>Performance integration and</u> <u>optimization of high</u> <u>temperature plasmas</u>

## High T regime was successfully extended

- > The fusion reaction by  $\alpha$  particle, both the  $T_i$  and the  $T_e$  are high.
  - -> The turbulent is strongly affected by the  $T_e/T_i$  but is unclear.
    - Realize a plasma both with high  $T_i$  and high  $T_e$ ,
    - Clarify its ion thermal confinement characteristics.

Optimized plasma operation using NBI & ECRH mix to

 (1) suppress MHD, (2) avoid T<sub>i</sub> degradation in ECRH superposition.
 -> The high T regime was successfully extended.



## **Electron ITB with radiative divertor**

#### In the future reactor,

- ✓ A steady state sustainment of
- ✓ Improved confinement plasmas with
- ✓ Lower diverter heat load.
- We attempted the electron ITB formation with the reduced divertor heat load.

#### e-ITB formation,

-> High power ECRH to plasma core. Radiative divertor,

 $\checkmark$  Ne feeding to increase the radiation.

✓ RMP to expand the edge low *T* area.





### **Electron ITB with radiative divertor**

- > Low  $T_e$  area expanded due to the RMP (m/n = 1/1),
  - (1) *P*<sub>rad</sub>: Increased by a factor of 4,
  - (2) Low valence Ne and C intensity increased,
  - (3) *q*<sub>div</sub>: Reduced to 24%,
  - (4) e-ITB maintained even after Ne injection.
    - $\checkmark$  Optimization of configuration and the impurity.
    - ✓ Longer sustainment.









### **Steady state operation of e-ITB**



# <u>Thermal confinement of plasmas,</u> <u>of which T<sub>i</sub> and T<sub>e</sub> are</u> <u>simultaneously high</u>

#### **MHD event Limiting** *T*<sub>i</sub> increase

In high T<sub>i</sub> plasma, Trapped Energetic lons Driven Resistive Interchange Modes (EIC) is frequently excited both for H and D experiment.

> The EIC accompanies the bursty loss of the high energy ions as shown in  $S_n$ .

-> Decrease in  $W_p$  and  $T_i$ .

-> The EIC should be suppressed for higher  $T_i$  and the steady sustainment.



#### Higher T<sub>i</sub> was successfully achieved



## $\chi_{e}$ reduced W/O $\chi_{i}$ increase

#### **Electron**

- The dT<sub>e</sub>/dr<sub>eff</sub> increased, especially in r<sub>eff</sub> < 0.2 m due to the e-ITB formation.
- > The  $\chi_e$  widely decreased, especially in the ITB region.

#### <u>lon</u>

- Although the dT<sub>i</sub>/dr<sub>eff</sub> slightly decreased around the plasma center, the dT<sub>i</sub>/dr<sub>eff</sub> increased around the half radius.
- The  $\chi_i$  reflected the tendency of  $dT_i/dr_{eff}$ . the  $\chi_i$  decreased except for the plasma center.



### $T_{\rm i}$ degradation by $T_{\rm e}$ increase

➤ ECRH is effective for EIC suppression,
 -> Core T<sub>i</sub> decreased with P<sub>ECRH</sub> increase.
 > ITG destabilization due to T<sub>e</sub>/T<sub>i</sub> increase.
 -> Increase of χ<sub>i</sub>.

> For simultaneous high  $T_i$  and  $T_e$ (1) **EIC suppression**,

(2)  $T_e/T_i$  control in moderate range.





 $\chi_{i}^{\prime} T_{i}^{1.5}$  [m<sup>2</sup>/s/keV<sup>1.5</sup>]

### $T_{\rm i}$ flattening in higher $T_{\rm e}/T_{\rm i}$

#### <u>On-axis ECRH was applied on</u> <u>high *T*<sub>i</sub> plasmas (~8 keV)</u>

- >  $T_{e0}$  became ~8 keV due to the ECRH,
  - -> *T*<sub>i</sub> gradient decreased (flattened),
- >  $R/L_{T_i}$  drastically decreased in high  $T_e/T_i$ ,
  - -> Keeping lower  $T_e/T_i$  is important to maintain peaked  $T_i$  profile.





#### Summary of extension of high-temperature regime

**From H to D**: High temperature regime was significantly extended in D operation.



## Summary

- The important goal of the LHD project is to demonstrate the scientific feasibility of helical-system rector.
- The presentation showed the recent LHD operation oriented the goal, (1) The performance integration/optimization of high T plasmas,
  - ✓ Successful extension of simultaneous high  $T_i$  and high  $T_e$ .
  - ✓ Electron ITB with low divertor heat load,
  - Steady sustainment of electron ITB plasmas and the better thermal confinement in D.
  - (2) Thermal confinement of plasmas both with high  $T_i$  and high  $T_e$ ,
  - ✓ Suppression of EIC using ECRH -> Higher  $T_i$  achievement,
  - ✓ Ion thermal confinement is sensitive to  $T_{\rm e}/T_{\rm i}$ 
    - -> Control moderate range -> High  $T_i$  maintained with increased  $T_e$ .