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Introduction

➢ In the LHD, the D experiment was initiated in March 2017.

-> (1) Higher performance plasmas, (2) Isotope effect, (3) High energy ion.

➢ Important goal:

-> Demonstrate the scientific feasibility of helical-system rector;

• Optimizing plasma performance,

• Development of operation scenario,

• Comprehensive understanding of physics.

➢ The presentation shows the recent LHD results of the high-performance

plasma experiments;

(1) The performance integration and the optimization of high

temperature plasmas.

-> High Ti and high Te, e-ITB with detachment, SSO of e-ITB.

(2) Thermal confinement of plasmas, of which Ti and Te are

simultaneously high.
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Heating system for the exps. (~Oct 2020)

➢ ECRH:  Gyrotron x5 (Over 1 MW each) from 2014

➢ ICH: 1 pair of straps (0.8 MW/CW each, ~38 MHz)

➢ NBI: Neg. x3 (16 MW/ 180 keV (H)),

Pos. x2 (12 MW/ 40 keV (H)) -> 18 MW/ (60) 80 keV (D)

Total power;

ECRH: 5.4 MW, ICH: 1.6 MW, NBI: 34 MW (D)

77 GHz x3, 154 GHz ECRH x2

: Over 1 MW for high Bt exp.

56 GHz x1

: 400 kW for high b exp.

Positive, perp.

6 MW/ 40 keV

-> 9 MW/ 80 keV

Negative, 

tang.

6 MW/ 

180 keV

Negative, tang.

5 MW/ 180 keV

Negative, tang.

5 MW/ 180 keV

Positive, perp.

6 MW/ 40 keV

-> 9 MW/ 60 keV

56

GHz

ICH antenna 

0.8 MW/CW
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Performance integration and 

optimization of high 

temperature plasmas
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High T regime was successfully extended

➢ The fusion reaction by a particle, both the Ti and the Te are high.

-> The turbulent is strongly affected by the Te/Ti but is unclear.

• Realize a plasma both with high Ti and high Te,

• Clarify its ion thermal confinement characteristics.

➢ Optimized plasma operation using NBI & ECRH mix to

(1) suppress MHD, (2) avoid Ti degradation in ECRH superposition.

-> The high T regime was successfully extended.
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Electron ITB with radiative divertor

➢ We attempted the electron ITB formation

with the reduced divertor heat load.

e-ITB formation,

-> High power ECRH to plasma core.

Radiative divertor,

✓ Ne feeding to increase the radiation.

✓ RMP to expand the edge low T area.

In the future reactor,
✓ A steady state sustainment of

✓ Improved confinement plasmas with

✓ Lower diverter heat load. W/O RMP
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Electron ITB with radiative divertor
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➢ Low Te area expanded due to the RMP (m/n = 1/1),

(1) Prad: Increased by a factor of 4,

(2) Low valence Ne and C intensity increased,

(3) qdiv: Reduced to 24%,

(4) e-ITB maintained even after Ne injection.

✓ Optimization of configuration and the impurity.

✓ Longer sustainment.
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Steady state operation of e-ITB
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➢ Higher Te0 was obtained in

D plasma with same ECH.

➢ Te0 ~6 keV could be steadily

sustained for 35 s in D.

⚫ SSO of e-ITB.

⚫ Higher Te in D plasma.

✓ Lower divertor heat load

will be combined.
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Thermal confinement of plasmas, 

of which Ti and Te are 

simultaneously high

10/17



MHD event Limiting Ti increase

➢ In high Ti plasma, Trapped Energetic Ions Driven Resistive Interchange

Modes (EIC) is frequently excited both for H and D experiment.

➢ The EIC accompanies the bursty loss of the high energy ions as shown in Sn.

-> Decrease in Wp and Ti.

-> The EIC should be suppressed for higher Ti and the steady sustainment.
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Higher Ti was successfully achieved

➢ The mode width of RIC coupled with helical

trapped ions ~Te
-1/2 (b /Lpe)

1/6.

-> Decrease of mode width by Te increase

➢ Low power ECRH (~1 MW) was superposed.

-> EIC was suppressed.

➢ Higher Ti0 with higher Te0.
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e reduced W/O

i increase
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➢ The dTe/dreff increased,

especially in reff < 0.2 m due

to the e-ITB formation.

➢ The e widely decreased,

especially in the ITB region.

Ion

Electron

➢ Although the dTi/dreff slightly

decreased around the plasma

center, the dTi/dreff increased

around the half radius.

➢ The i reflected the tendency of

dTi/dreff. the i decreased

except for the plasma center.
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➢ ECRH is effective for EIC suppression,

-> Core Ti decreased with PECRH increase.

➢ ITG destabilization due to Te/Ti increase.

-> Increase of i.

➢ For simultaneous high Ti and Te

(1) EIC suppression,

(2) Te/Ti control in moderate range.
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Ti flattening in higher Te/Ti D exp.H exp.
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On-axis ECRH was applied on 

high Ti plasmas (~8 keV)

➢ Te0 became ~8 keV due to the ECRH,

-> Ti gradient decreased (flattened),

➢ R/LTi drastically decreased in high Te/Ti,

-> Keeping lower Te/Ti is important to

maintain peaked Ti profile.
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Summary of extension of high-temperature regime

From H to D: High temperature regime was significantly extended in D operation.
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(b)

From previous FEC:

➢ The operation regime with the simultaneous high Ti and

high Te was successfully extended.

➢ ECRH was effectively utilized.

✓ Te increased with Ti0 ~10 keV

due to the Te/Ti control.

✓ Higher Ti was realized due to

the suppression of EIC.
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Summary

➢ The important goal of the LHD project is to demonstrate the scientific

feasibility of helical-system rector.

➢ The presentation showed the recent LHD operation oriented the goal,

(1) The performance integration/optimization of high T plasmas,

✓ Successful extension of simultaneous high Ti and high Te.

✓ Electron ITB with low divertor heat load,

✓ Steady sustainment of electron ITB plasmas and the better thermal

confinement in D.

(2) Thermal confinement of plasmas both with high Ti and high Te,

✓ Suppression of EIC using ECRH -> Higher Ti achievement,

✓ Ion thermal confinement is sensitive to Te/Ti

-> Control moderate range -> High Ti maintained with increased Te.
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