



# Effect of micro-alloying and heat treatment on the neutron irradiation behavior of EUROFER type steels

M. Rieth<sup>1</sup>, <u>E. Simondon<sup>1</sup></u>, Pintsuk<sup>2</sup>, G. Aiello3, J. Henry<sup>2</sup>4, D. Terentyev<sup>2</sup>5, A. Puype<sup>6</sup>, N. De Wispelaere<sup>6</sup>, C. Cristalli<sup>7</sup>, L. Pilloni<sup>8</sup>, O. Tassa<sup>9</sup>, M. Klimenkov<sup>1</sup>, H.-C. Schneider<sup>1</sup>, P. Fernandez<sup>10</sup>, T. Gräning<sup>11</sup>, X. Chen<sup>11</sup>, A. Bhattacharya<sup>11</sup>, J. Reed<sup>11</sup>, J.W. Geringer<sup>11</sup>, M. Sokolov<sup>11</sup>, Y. Katoh<sup>11</sup>, L. Snead<sup>12</sup>

Presentation #1079

INSTITUTE FOR APPLIED MATERIALS – APPLIED MATERIALS PHYSICS





#### **Chemical composition**



| wt.%  | Е     | н     | I     | Р     | J       | K     | L     | 0    |
|-------|-------|-------|-------|-------|---------|-------|-------|------|
| Cr    | 8.83  | 8.70  | 8.73  | 8.70  | 9.00    | 7.84  | 9.14  | 8.8  |
| С     | 0.107 | 0.058 | 0.110 | 0.105 | 0.107   | 0.017 | 0.106 | 0.06 |
| Mn    | 0.53  | 0.02  | 0.02  | 0.02  | 0.39    | <0.03 | 0.54  | 0.50 |
| V     | 0.20  | 0.35  | 0.35  | 0.20  | 0.22    | 0.22  | 0.20  | 0.3  |
| Ν     | 0.019 | 0.047 | 0.042 | 0.045 | 0.022   | 0.022 | 0.038 | 0.07 |
| W     | 1.08  | 1.07  | 1.08  | 1.14  | 1.10    | 0.99  | 1.11  | 0.97 |
| Та    | 0.12  | 0.10  | 0.09  | 0.09  | 0.11    | 0.13  | 0.12  | 0.05 |
| Si    | 0.04  | 0.04  | 0.04  | 0.03  | <0.04   | <0.04 | 0.03  | 0.15 |
| Prov. | KIT   |       |       |       | SCK.CEN |       | CEA   | ENEA |

 $\bigcirc$  Mn  $\Box$  enables higher tempering temperature &  $\bigcirc$  dislocation loop formation  $\bigcirc$  C  $\Box$   $\bigcirc$   $\bigcirc$  Coarse M<sub>23</sub>C<sub>6</sub> ⊕ V, N  $\Box$   $\bigcirc$  ⊕ MX-type precipitates



#### **Materials processing**



'Technological' HT

High austenitization T

Low tempering T

|                                                                            | 1 1                                   |                                                  |                       |                       | I I                                         |                              |                       |                                       |
|----------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------|-----------------------|-----------------------|---------------------------------------------|------------------------------|-----------------------|---------------------------------------|
|                                                                            | Е                                     | н                                                |                       | Р                     | J                                           | K                            | L                     | 0                                     |
| TMT                                                                        | TMT +<br>Technological<br>HT (980°C + | <b>1150°C</b> /1h<br>8 steps of HR down to 900°C |                       |                       | 1250°C/1h<br>6 steps of HR down to<br>850°C |                              | ТМТ                   | <b>1080°C</b> /1h<br>+ HR at<br>650°C |
|                                                                            | slow AC)                              | + WQ                                             |                       |                       | +AC                                         |                              |                       |                                       |
| Heat<br>treatment<br>After TMT                                             | <b>980°C</b><br>0.5h                  | <b>1000°C</b><br>0.5h                            | <b>1000°C</b><br>0.5h | <b>1000°C</b><br>0.5h | <b>880°C</b><br>0.5h                        | <b>1050°C</b><br>15min       | <b>1150°C</b><br>0.5h |                                       |
|                                                                            | + AQ                                  | + WQ                                             | + WQ                  | + WQ                  | + WQ                                        | + WQ                         | + AQ                  |                                       |
|                                                                            | + 760°C                               | + 820°C                                          | + 820°C               | + 820°C               | <b>+ 750°℃</b><br>2h                        | + <mark>675°C</mark><br>1.5h | + 700°C               | <b>760°C</b><br>1h                    |
|                                                                            | + AC                                  | + AC                                             | + AC                  | + AC                  | + AC                                        | + AC                         | + AC                  | + AC                                  |
| Prov.                                                                      | KIT                                   |                                                  |                       |                       | SCK.CEN                                     |                              | CEA                   | ENEA                                  |
| AQ= Air Quench<br>VQ = Water Quend<br>AC = Air Cooling<br>IR = Hot Rolling | ch                                    | Hig                                              | γ<br>h temper         | ing T                 | J                                           |                              |                       |                                       |



#### **Irradiation specifications**





- Neutron irradiation in 85 MW High Flux Isotope Reactor (HFIR)
- Target dose of 2.5 dpa ± 0.38 dpa





- Target temperature of **300** °C
- Tensile & bend bar test samples



### Vickers microhardness Low tempering T





[1] M. Rieth et al., "EUROFER 97 Tensile, charpy, creep and structural tests," Germany, 0947-8620, 2003.





□ K & L show higher strength

## Most materials prove softer than EUROFER97/2, especially after irradiation

[2] "Material Property Handbook EUROFER97 - Grant Deliverable MAT D25.15," EUROFusion, 2017.[3] E. Gaganidze, "Assessment of Fracture Mechanical Experiments on Irradiated EUROFER97 and F82H Specimens, Final Report TW5-TTMS 001-D14, 2007.



#### **Fracture Mechanic properties**





Significantly better fracture mechanic properties for 5 alloys compared to EUROFER97/2

[4] E. Gaganidze and J. Aktaa, "Assessment of neutron irradiation effects on RAFM steels," Fusion Eng. Des., vol. 88, no. 3, pp. 118–128, 2013



#### Microstructure







#### **Microstructure**







#### **Microstructure**





#### 'Technological Heat treatment'







#### Conclusion



- 8 newly developped advanced RAFM steels were irradiated at 300°C with a nominal dose of 2.5 dpa
- Better fracture toughness properties for 5 alloys
- Silght effect of micro-alloying compared to a much stronger effect of heat treatment and fabrication history.
- Technological Heat treatment leads to comparable fracture toughness behavior as EUROFER97

#### Acknowledgements

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

