IFMIF/EVEDA PROJECT:

IFMIF

Farget Facility

Achievements and Outlooks beyond 2020

Philippe Cara

IFMIF/EVEDA Project Leader

14 May 2021

28th IAEA Fusion Energy Conference (FEC 2020)

Test Facility

FUSION FOR ENERGY GQST

Accelerator Facility

Broader Approach

IFMIF

International Fusion Materials Irradiation Facility

EVEDA

Engineering Validation & Engineering Design Activities

Article 1.1 of Annex A of the **BA Agreement** mandates **IFMIF/EVEDA**

...to produce an integrated engineering design of IFMIF and the data necessary for future decisions on the construction, operation, exploitation and decommissioning of IFMIF, and to validate continuous and stable operation of each IFMIF subsystem

Why a Fusion Neutron Source?

The first wall of the fusion reactor vessel

will see 14.1 MeV neutrons Due of DT reactions ITER first wall will face < 3 dpa at the end of its operation life

DEMO reactor is expected to see >15 dpa per year of operation (20 years ~6 fpy)

It is also expected transmutation (He and H) reactions which will change the properties of the materials (structural and functional integrity)

- Selection and qualification of candidate materials for fusion reactors
- Generation of engineering data for design, licensing and safe operation of DEMO up to end-of-life
- Completion, calibration and validation of material databases (mainly generated from fission reactors research)
- Material testing and simulation carried out simultaneously to correlated fundamental understanding of radiation response of materials

International Advisory Panels pointed out Fusion Neutron Source as essential need toward Fusion Power Plant → best fulfilled with a D-Li stripping source → IFMIF concept

Two concurrent deuterons beam of 125 mA CW at 40 MeV Impact on a liquid Li screen flowing at 15 m/s

Generating a footprint of 200 x 50 mm²

A flux of neutrons of $\sim 10^{18}$ n/m²s is generated in the forward direction with a broad peak at 14 MeV and irradiate three regions:

>20 dpa/fpy in 0.5 liters (H)
>1 dpa/fpy in 6 liters (M)
<1 dpa/fpy in 8 liters (L)</pre>

 \rightarrow Availability of facility >70%

2 IFMIF/EVEDA Status

14/05/2020

EVA Phase – Target Facility

Milestones

Construction completed on 19 Nov. 2010

Test completed on 31 March 2015

<u>**Results:**</u> No change in Li target thickness and stable Li target throughout the continuous operation for 571 h (~24 days).

System Integration was successfully demonstrated March 2015

Engineering Validation Activities completed on Feb. 2017

Validation Activities completed on Apr. 2015

IFMIF/EVEDA PROJECT: Achievements and outlooks beyond 2020

IFMIF/EVEDA Phase I

3 LIPAc: Accelerator Facility

Equipment designed and constructed in Europe, Installed and commissioned in Rokkasho

World's highest current linac in H⁺ and D⁺ in CW

World's top H⁺&D⁺ injector performance

World's longest RFQ

World's record of light hadrons current through SC cavities

World's highest beam perveance

Accelerator Operational condition

IFMIF/EVEDA CQMS-0920 (DMS Ref. BA_D_ 27MTRJ)

LIPAc: Commissioning Status

4

4 configurations considered for 5 commissioning phases to validate the LIPAc performances

FUSION For Energy

Phase A: Experimental campaign

LIPAc injector requirements

- •D+ beam.
- •Energy: 100 keV.
- •Intensity: 140 mA.
- •Final emittance: \leq 0.3 π mm.mrad (target value: \leq 0.25 π mm.mrad).
- •Twiss parameters at the RFQ entrance: less than 10% mismatch

2nd configuration – Commissioning Phase B

Phase B installation was completed in October 2017.

Operation Mode 2 shifts Beam Operation & RFQ Conditioning

Phase B: Summary Experimental campaign 🎡 🕅 🥪 🥑 QST

Achieved in LIPAc research activity

- RF operation at <u>full RF level (132 kV ~ 1 ms, 1 Hz)</u>
- Beam <u>acceleration with nominal space charge</u> with pulsed:
 - Proton beam (2.5 MeV, 60mA)
 - Deuteron beam acceleration (5 MeV, 125 mA)

Celebration of the end of 5 MeV, 125 mA, D+ beam acceleration on 9th Aug 2019

> 90% Beam transmission through the RFQ

Significant project milestone reached (125 mA, @ 5 MeV, 1 ms pulse)

We demonstrate that all the components needed to run the LIPAc accelerator in the phase B configuration work as expected.

IFMIF/EVEDA PROJECT: Achievements and outlooks beyond 2020

3rd configuration – Commissioning Phase B+

FUSION For Energy

SRF Linac

FUSION For Energy

Phase B+: Status

Check-out tests and individual commissioning of the HEBT/BD on going (Performed remotely)

Injector and RF injection started

Start Beam Operation by the end of second trimester

construction for phase

IFMIF/EVEDA PROJECT: Achievements and outlooks beyond 2020

FOR ENERGY SQST

4th configuration – Commissioning Phase C/D

Components under assembly in Rokkasho

- A clean room has been built in Rokkasho under the responsibility of QST in the DEMO Joint Research Building
- ☑ F4E is responsible of the assembly, CEA provide support
- □ Almost all components delivered on site, assembly to start last semester 2021

Assembly

5 Outlook beyond 2020

14/05/2020

IFMIF/EVEDA PROJECT: Achievements and outlooks beyond 2020

Outlook beyond 2020

For IFMIF/EVEDA this fruitful collaboration is continuing in pursuing the mandate assigned to IFMIF/EVEDA Project by:

- Complementing the engineering design of the IFMIF-like Fusion Neutron Source and complementing the Lithium Target Facility engineering validation,
- Continuing the commissioning of the LIPAc (Phase B+, C and D), by enhancing systems already validated during the first phases.

2020-2022: Phase B+ commissioning (125 mA D+, 5 MeV – High DC)

2021-2022:

Assembly, integration and checkout tests of the cryomodule

2023-2024:

Phase C/D Commissioning (125 mA D+, 9 MeV – CW)

2021-2025:

LIPAc enhancement activities to improve both reliability and availability required for the fusion neutron source (e.g. A-FNS/DONES), but also to validate the operation requirements

The Fusion Neutron Source engineering design activities and the Lithium Target Facility engineering validation activities have restarted in 2020 aiming to provide an updated Fusion Neutron Source Engineering Design report.

The main activities will be dedicated to:

- □ The enhancement of the design of the Lithium loop (e.g. tritium migration, erosion/deposition modelling, purification, accident analysis, optimization of the Li-Oil Heat Exchanger),
- □ The update of the Fusion Neutron Source Design focusing in the design activities for safety and accidental analyses.

Li purification system validation activity

Erosion/corrosion analysis on ELTL materials (JA)

Surface morphology analyses and tensile tests

Outline

6 Conclusions

- Since the project started in 2007, this international collaboration has continued to grow and has achieved important milestones,
- We have managed to create an excellent team spirit with the 'in-kind' suppliers, F4E and QST,
- The recent progress and achievements reflect the importance of the fruitful collaboration between Japan and Europe for the development of the future fusion neutron source by:
 - Completing the design activities for the future neutron sources,
 - Enhancing the systems to demonstrate the full reliability,
 - Maintaining the competences and already developed know-how that are essential for the future.

Celebration of 5 MeV, 125 mA, D+ beam acceleration 9th Aug 2019