Development and Experimental Qualification of Novel Disruption Prevention Techniques on DIII-D

Jayson Barr

1 General Atomics
2 Princeton Plasma Physics Lab
3 Dalian University of Technology
4 MIT

And the DIII-D team

Presented at the
IAEA FEC 2020
May 14th, 2021
Comprehensive disruption prevention must cover the full range of control regimes

Disruption Control

Regimes:

1. Continuous Prevention:
 - Nominal scenario
 - Regulate perform.
 - Catch & Subdue
 - Temp. lower performance
 - Return to target if stable

2. Asynchronous Avoidance:
 - Controllability Limit
 - Controlled Plasma Parameter (l, β, I_p, etc.)

3. Emergency Avoidance:
 - Rapid Controlled Shutdown, Mitigation: the last resort

"disruption" = loss of control

(1) Should catch 99%+ of disruptions!

The Disruption Free Protocol:

- To qualify ITER-scalable, comprehensive disruption control in routine operations

- Large-scale piggybacks to complement experiments: >40% run days in ’19
Comprehensive disruption prevention must cover the full range of control regimes.

Disruption Control Regimes:

1. **Continuous Prevention:**
 - Controllability Limit
 - Controlled Plasma Parameter (l_i, β, I_p, etc.)
 - Nominal scenario
 - Regulate performance
 - Catch & Subdue
 - Temp. lower performance
 - Return to target if stable
 - Controlled Plasma Parameter

2. **Asynchronous Avoidance:**
 - Rapid Controlled Shutdown
 - Mitigation: the last resort

3. **Emergency Avoidance:**
 - Proximity Controller
 - Continuously regulate stability vs performance

“disruption” = loss of control

Proximity Controller

Continuous disruption prevention must cover the full range of control regimes.
A new proximity-to-instability control architecture has been developed for DIII-D in FY 2020

- **Threshold instability value for applying action**
 - Allows setting margin of stability

- **Generalized architecture maps stability metrics to requested changes in plasma targets**
 - Shape, I_p, β...
 - Tunable PIDs, gains

- **Output target mods combined, weighted by problem importance**
Proximity-to-instability control architecture maps real-time stability metrics to modified scenario targets

Stability Models:
- VDE γ-Est.
- Δ^*-Est., ML TM...
- Div Heat Flux
- A(M)MS Response
- Mode |Ampl. |, f_{RHD}
- Interpretable ML
- More tools needed!

Avoidance Handling:
- VDE
- Ideal, β, GW limits
- Tearing Modes
- Locked Modes
- Stable Ops Space Monitoring
- Unintended ELM
- Radiative Collapse
- H-L Back-transition

Target Mods:
- K, δ, ζ
- n_e
- β_N
- l_i
- q_{95}
- j, j_{CD}
- EFC
- Rot.
- f_{rad}

Other Control Categories:
- Discharge Shape
- Density Control
- Profile Control
- Alternate:
 - Ip & Vloop
 - Neutral Beams
 - ECH/ECCD
 - RMP

Real-time target changes sent to actuator controllers

Settings map metrics to scenario targets

Physics-problem focused

Uses real-time stability metrics
Proximity-to-instability control architecture maps real-time stability metrics to modified scenario targets

Ex: VDEs

Uses real-time stability metrics

Physics-problem focused

Settings map metrics to scenario targets

Real-time target changes sent to actuator controllers

Stability Models:
- VDE γ-Est.
- Δ'-Est., ML TM...
- Div Heat Flux
- A(M)MS Response
- Mode [Ampl.], f_{RHD}

Interpretable ML

More tools needed!

Avoidance Handling:
- Ideal, β, GW limits
- Tearing Modes
- Locked Modes
- Stable Ops Space Monitoring
- Unintended ELM
- Radiative Collapse
- H-L Back-transition

Target Modds:
- K, δ, ζ
- n_c
- β_N
- l_l
- q_{ss}
- j, \bar{j}_{CD}
- EFC
- Rot.
- f_{rad}

Other Control Categories:
- Discharge Shape
- Density Control
- Profile Control
- Alternate: Ip & Vloop
- Neutral Beams
- ECH/ECCD
- RMP
Proximity controller applied for robust VDE prevention using real-time VDE-\(\gamma\) estimator for shape target feedback

- VDE reliably prevented until Proximity Controller disabled
 - Example: pre-shot K-target ramp to induce VDE

- **Real-time VDE-\(\gamma\) estimators:** rigid motion, or ML-based models

[Graphs and diagrams showing Ip, K, Limit, and Threshold with red and blue lines indicating Prox. Ctrl on and off, and adjusted time (blue).]
Robust control is a requirement for safe operations near stability limits

- Operational limits are limited by physics & control
- Robustly controllable VDE growth-rates assessed in recent experiments
- Robust control at $\gamma \sim 800-850$ /s for ≥ 3 s

![Graph showing magnetic limiter threshold and control](image-url)
Future integration with include Interpretable ML, MHD Spectroscopy planned for experiments in 2021

- **Integrating with Interpretable ML [1]**
 - DPRF: Disruption Prevention via Random Forests [1]
 - Contribution factors (f_c) map to controllable params
 - Scale by overall disruptivity

Example:

$$\Delta \kappa = PID \left[f_{danger} \cdot f_{\kappa-\text{contrib}} \cdot \text{sign} \left(\frac{d\kappa}{dt} \right) \left(\frac{\Delta \kappa_{\text{target}}}{\Delta f_{\kappa-\text{contrib}}} \right) \right]$$

Future integration with include Interpretable ML, MHD Spectroscopy planned for experiments in 2021

- **Integrating with Interpretable ML [1]**
 - DPRF: Disruption Prevention via Random Forests [1]
 - Contribution factors (f_c) map to controllable params
 - Scale by overall disruptivity

- **Active Multi-Mode Spectroscopy Demonstrated Offline [2-3]**
 - Continuous monitoring of closest-to-unstable modes
 - Real-time version ready for upcoming experiments

Figure adapted from T. Liu NF [2]
Comprehensive disruption prevention must cover the full range of control regimes

Disruption Control Regimes:

1. **Continuous Prevention:**
 - Controllability Limit
 - Nominal scenario
 - Regulate perform.

2. **Asynchronous Avoidance:**
 - Temp. lower performance
 - Catch & Subdue
 - Return to target if stable

3. **Emergency Avoidance:**
 - Rapid Controlled Shutdown
 - Mitigation: the last resort

"disruption" = loss of control

- **Rapid Controlled Shutdown**
 - 2nd-to-last resort before mitigation

Controlled Plasma Parameter

\[(l, \beta, I_p, \text{etc.})\]
Qualifying fast, emergency shutdown after large $n=1$ tearing, locked modes for effectiveness on DIII-D

- Applied shutdown survey recipe1:
 - $dI_p/dt \sim 2-3$ MA/s, sustained $P_{\text{NBI}} \sim 2-3$ MW

- Metric of success is lower final I_N ($W_m \sim I_p^2 \sim I_N^2$)

Example emergency shutdown:

After high B-dot or LM (Div and Lim)

\[
I_N = I_p / aB_t
\]

$N = 10^1$

12 J. Barr/ITER FEC 2020/May 14th, 2021

[1] J.L. Barr et al. IAEA FEC 2018
Qualifying fast, emergency shutdown after large n=1 tearing, locked modes for effectiveness on DIII-D

- **Applied shutdown survey recipe**:
 - \(\frac{dI_p}{dt} \approx 2-3 \text{ MA/s} \), sustained \(P_{\text{NBI}} \approx 2-3 \text{MW} \)

- **Metric of success is lower final \(I_N \)** \((W_m \approx I_p^2 \sim I_N^2) \)

![Graph showing % Shots and \(I_N \) vs. \(I_p/aB_t \)]

Example emergency shutdown:

- Applied shutdown survey recipe:
 - \(\frac{dI_p}{dt} \approx 2-3 \text{ MA/s} \), sustained \(P_{\text{NBI}} \approx 2-3 \text{MW} \)
 - Metric of success is lower final \(I_N \) \((W_m \approx I_p^2 \sim I_N^2) \)
Qualifying fast, emergency shutdown after large n=1 tearing, locked modes for effectiveness on DIII-D

- **Applied shutdown survey recipe**:
 - $\frac{dI_p}{dt} \sim 2-3$ MA/s, sustained $P_{\text{NBI}} \sim 2-3$ MW

- **Metric of success is lower final I_N** ($W_m \sim I_p^2 \sim I_N^2$)

Example emergency shutdown:

1. Applied shutdown survey recipe:
 - $\frac{dI_p}{dt} \sim 2-3$ MA/s, sustained $P_{\text{NBI}} \sim 2-3$ MW

2. Metric of success is lower final I_N ($W_m \sim I_p^2 \sim I_N^2$)
Transitioning to limited topology for emergency shutdown dramatically reduces LM disruption risk on DIII-D

- After LM is detected, shape modification immediately applied.

- Despite common use and improvements, ITER will likely require multiple prevention tools to improve these rates.

Focus on LM trips:

Limited Shutdown:
- After LM detected:
 - $I_N = I_p / aB_t$
 - N = 18

Diverted Shutdown:
- After LM detected:
 - $I_N = I_p / aB_t$
 - N = 31

[1] J.L. Barr et al. IAEA FEC 2018
Warm, helical plasma core generation is a promising technique for emergency shutdown / alternate mitigation

- Novel emergency shutdown technique for long current quench durations
 - DIII-D high-Ip discharges (~1.7MA+)
 - Improves confinement after thermal quench

- Helical structure induced after thermal quench with large applied 3-D fields
 - Reconstructed with dual Soft X-ray Imaging
 - Consistent with ECE, TS

- Can modify current quench alongside Ne injection
 - Can extend current quench to ~100ms
Warm, helical plasma core generation is a promising technique for emergency shutdown / alternate mitigation

- **Novel emergency shutdown technique for long current quench durations**
 - DIII-D high-Ip discharges (~1.7MA+)
 - Improves confinement after thermal quench

- **Helical structure induced after thermal quench with large applied 3-D fields**
 - Reconstructed with dual Soft X-ray Imaging
 - Consistent with ECE, TS

- **Can modify current quench alongside Ne injection**
 - Can extend current quench to ~100ms

Conclusions: DIII-D is developing, testing, and qualifying control tools for comprehensive disruption avoidance

- DIII-D Disruption Free Protocol: initiative for qualifying comprehensive disruption prevention tools

- Novel Proximity-to-Instability controller implemented for real-time scenario mod’s to maintain stability, applied for robust VDE prevention

- The effectiveness of emergency shutdown for disruption prevention is being rigorously quantified

- Novel technique generates warm, helical core after thermal quench to significantly slow current quench