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Key questions for the ITER-DMS studied at JET

ITER-DMS with 6 SPIs and services
Port Cell with Port Plug and ITER-DMS

ITER DMS needs JET-SPI contribution

Thermal load mitigation: keep conducted heat loads to        
divertor <20MJ through Ne/H-injection

• Provide data at high thermal energies (~8MJ) to project
required Ne-quantity for ITER using 3D-MHD codes
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50<tCQ<150 ms and radiate magnetic energy

• CQ-acceleration of disruption with low intrinsic radiation
• Study post-TQ assimilation

Runaway electron impact mitigation • Low-Z (D2) and High-Z (Ne, Ar) injections into RE-beam
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SPI system at JET
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• 3-barrel gun system with diameters 
A=12.5mm, B=8mm, C=4.5 mm 
and L/D~1.5

• Gas species: H2, D2, Ne and Ar

• Microwave cavity diagnostic to determine 
pellet mass, integrity and velocity

• Punches can be fitted on two largest barrels 
to reduce velocity and to dislodge Ar-pellets.

• Shattering through S-bend with 20o angle

see also L. Baylor et al, this conference
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SPI and Diagnostics

• Fast camera viewing 
SPI injection with 
various filters

• 2 bolometer each with 
24 channels 
( Prad,v, Prad,H)

• External coils (EFCC) 
to provide n=1 
magnetic perturbation

Bolometer
(horizontal)

Bolometer
(vertical)

SPI
(Top)

JET toroidal cross-section

Error Field Correction 
Coils (EFCC)

BR,pert BR,pert

fast camera view: 
dt~50ms
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Fragment size distribution
• Scenario: injection into healthy H-mode plasma 

(Ip~2.5MA, Wmag~5.4MJ, Wth~3-4 MJ)

 Shorter CQ times with punch:
– More resistive plasma  better assimilation of 

injected impurities

– Assimilation better due to larger amount of solid 
material or different fragment velocities?

T. Gebhart et al, IAEA-TM “Disruptions”, 2020

• Fragment plume analysis with 12.5mm pellet 
(5%Ne+D2-shell)

• mass detected in plume:

– with punch = 74% for v~450m/s

– w/o punch =  5.4% for v~575m/s

 High fraction of gas and micro-fragments 
produced for high pellet velocities.

current quench time

v~510m/s

v~210m/s
v~220m/s

v~150m/s

U. Sheikh et al, 
this conference
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Thermal load mitigation 
with D2/Ne mixtures
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Impact of neon quantity on radiation

• Scenario: injection into healthy H-mode plasma (Ip~2.5MA, Wmag~5.4MJ, Wth~3-4 MJ)

U. Sheikh et al, this conferenceInjected neon atoms        

 Indication of saturation of radiated energy with increasing amount of Ne-atoms

 Modelling required because of unknown assimilation efficiency and radiation distribution

radiated energy
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Radiation efficiency

• Vary PNBI to scan fth (Wth=0.3-1.5MJ for Wmag~3 MJ)

– Pellet: 80% Ne (Ne=2.4x1022 atoms + D-shell)

• Axisymmetric weighted is significant lower than 100%

Radiated energy fraction: <frad> = Wrad,H / (Wmag+Wth-Wcoupled)

Thermal energy fraction: fth = Wth / (Wmag+Wth-Wcoupled)

• Fast cameras show large helical structure: SPI-location

 Difference in Wrad measured by 2 bolometers 
 radiation asymmetries

 Toroidal peaking ~2.2

R. Sweeney et al, 62nd APS DPP meeting, 2020

• Emis3D code to determine helical structure 
fitting best the LOSs of the bolometers

• Assumes Gaussian toroidal distribution using 
Prad,V and Prad,H as boundaries



Page 9IDM UID: xxxxxxStefan Jachmich et al, 28th IAEA Fusion Energy Conference, May-2021
© 2021, ITER Organization

Radiation asymmetries for SPI into plasmas 
with pre-existing n=1 mode



Page 10IDM UID: xxxxxxStefan Jachmich et al, 28th IAEA Fusion Energy Conference, May-2021
© 2021, ITER Organization

Strategy to determine radiation asymmetries

• Bolometer coverage insufficient to determine TPF (and PPF) directly

• Vary O-point location of n=1 mode with respect to injection location to determine “toroidal” 
dependence of radiation Error Field 

Correction Coils 
(EFCC)

• Assumes relative weights 
of LOS of bolometer 
channels correctly add to 
total radiated power at 
toroidal location of 
diagnostic

• Poloidal peaking factor 
not assessable.
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• H-mode (Ip=2.0MA, PNBI=12MW, Wth~2 MJ, fth~0.4)

– Pellets used: B (81% Ne) and A (18%Ne), i.e. amount of injected neon is kept constant

• Model assumes Gaussian-like impurity density and cosine-dependence for n=1 mode effect 

Radiation asymmetries – H-mode

 TPF varies from 1.2 to 1.7 and is maximum for injections into the n=1 O-point.

 Current quench time does not depend on n=1 mode  similar particle assimilation.

Model based on M. Lehnen et al., Nucl. Fus. 2015.



Page 12IDM UID: xxxxxxStefan Jachmich et al, 28th IAEA Fusion Energy Conference, May-2021
© 2021, ITER Organization

Runaway electron avoidance scheme 
“Dilution cooling”
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Cooling duration
• Long pre-TQ cooling duration could be beneficial for 

– increasing plasma density for runaway electron avoidance

– reducing the required amount of neon to achieve sufficient TQ radiation while staying within 
electromagnetic load limits

• Pure deuterium injection needs to be followed by Neon injection prior TQ and CQ ( timing?)

 Already small injection of neon shortens 
cooling duration to a few millisecond

 Pure D2 injection results in much longer 
delays of TQ (several 10ms)

 Scatter due to fragment injection 
properties?

M. Lehnen et al, 4th Asia-Pac. Conf. Plas. Phys., 2020
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Multiple pure-D2 injection

 Does it help to inject train of “smallish” pellets 
rather one big one?

 Unclear correlation between n=1 growth rate and 
pre-TQ duration

mode lock threshold
for TQ (P. de Vries

et al., NF, 2016)
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• Different sequence of events:
96874: prompt material deposition  fast rise in 
radiation  n=1-mode triggered  TQ  CQ

Wth mainly radiated at TQ.

96867: radiation remains small @3rd piece 
interferometer laser refracts (due to high ne?), 
MARFE and n=1-mode  mode lock triggers MGI

 Wth reduced by ~65% at time of MGI!

• TQ trigger consistent with predicted 
mode lock threshold (D. Shiraki et al,
this conference)

thermal energy
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Assimilation limitation of multiple injections

• Last fragments from 3rd piece are being deflected and are not assimilated anymore  
 friction or rocket effect?

 First injection reaches maximum possible amount of material assimilation
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Termination of pre-TQ phase

• pure-D2 pellets (broken)

• 96865: 2 injections of 
fragm. over ~10ms

• 96875: fragments as one 
injection over ~5ms

 Formation of helical 
structures linked to short 
pre-TQ phases

 Scheme requires careful 
tailoring of injections

96865 

11.5ms

96875 

11.5ms

formation of helical structure 96875 

13ms

thermal quench

96865 

32ms

development of MARFE
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Current quench mitigation
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Current quench control

• Neon fraction in deuterium pellets and pellet size was varied
– target Ip=2.0MA (for diamonds Ip≥2.5MA)

target range for ITER

 Current quench duration does not depend on the total injected quantity 
but on the Ne fraction.

 TQ triggered before pellets are fully assimilated, 
i.e. at the same ablated Ne/D quantity.

S. Gerasimov et al, IAEA-TM “Disruptions”, 2020
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Effectiveness of SPI on post-disruptive plasma
• CQ mitigation in ITER must be ~100% reliable: mitigation upon TQ detection must be effective.

• Induced disruptions by MGI (2x1021D2) or SPI (13% and 60% Ne/D mixtures)

and mitigated with SPI (60% Ne/D mixtures)

 Injection into post-TQ plasma induced by density limit leads to similar CQ-duration as 
injections into pre-TQ plasma.

Note: ITER needs to inject into the CQ for heat load mitigation and electromagnetic-load 
already for plasma currents 7.0-8.0MA. 

S. Gerasimov et al, IAEA-
TM “Disruptions”, 2020
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Runaway electron impact mitigation
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High-Z injection for RE energy dissipation
• RE-beam generated by Ar-MGI into ohmic limiter plasma

• After ~350ms SPI-injection of pure neon or argon

C. Reux et al, IAEA TM, ITER, 2020
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 RE-Beam successfully shortened

 No significant difference between Ne and Ar
– Note: rmol(Ar) ~ 57% rmol(Ne)!

 Argon no longer considered for ITER-DMS

 At final loss: still significant energy  impact? 
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Low-Z injection for RE impact mitigation

• RE-beam generated by Ar-MGI into ohmic limiter 
plasma

• After t~380ms deuterium SPI into existing RE-beam

• Current increases and neutrons drop

• Electron density drops to <1018m-2

 plasma recombines

• Loop voltage decreases
 indicates purging of impurities?

• IR cameras indicate disappearance of RE 
synchrotron emission within 3ms after final neutron 
spike

C. Reux et al, Phys. Rev. Letter 2021
C. Paz-Soldan et al, this conference

D2-SPI

 Final current decay similar to ohmic CQ with

– absence of re-avalanche of REs

– strong MHD ( leading to larger wetted areas?)

 benign termination



Page 23IDM UID: xxxxxxStefan Jachmich et al, 28th IAEA Fusion Energy Conference, May-2021
© 2021, ITER Organization

Assessment of RE impact

• Heat flux of RE beam impact on inner wall measured by IR-camera

 High-Z SPI: heat loads up to ~7 MJ/m2

 Low-Z SPI: no relevant energy deposition during final MHD event!
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C. Reux et al, Phys. Rev. Letter 2021
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Summary and Conclusions
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Summary and conclusions

 JET experiments with the SPI have made (and hopefully will make further 
in the future) an important contribution to the ITER-DMS design!

1) Quantification of radiation asymmetries are essential to conclude on achievable 
radiation levels for thermal quench mitigation  requires modelling.

2) Assessment of radiation asymmetries has revealed TPF ~2.2 (w/o n=1) and max 1.7 
(with imposed n=1) ( ITER: total peaking must be <4!).

3) Long pre-TQ times (>>10ms) have been achieved with D2-SPI 

 Alternative ITER-DMS injection scheme for TQ-mitigation and RE-avoidance.

 But sensitivity to fragment delivery and required Ne-amount for dissipating the 
remaining Wth needs to be assessed.

4) CQ-rate can be controlled over corresponding required ITER-range and even post-TQ 
injection has been seen to be effective.

5) Injection of Ar into RE beam has shown no advantage compared to Ne for mitigation 
of the runaway electron impact  use of Ar is no longer part of ITER-DMS design.

6) Injection of D2 into RE beam successfully demonstrated benign impacts at final loss 
 considered as alternative mitigation scheme for runaway electrons in ITER.
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Thanks for your attention!


