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Conventional Approach:
• Inject High-Z (Ar/Ne)
• Collisionally dissipate REs

New Approach:1,2
• Inject D2 à collisionless

– via high-Z expulsion and 
bulk recombination3

• Access bigger & faster 
MHD kink instabilities

• ~100% REs instantaneously 
dumped to the first wall

1C. Reux et al, Phys. Rev. Lett 2021
2C. Paz-Soldan et al, Plas. Phys. Contrl. Fus 2019

3E. Hollmann et al, Phys. Plasma 2020

Only New Approach 
Avoids First Wall Heating

Localized 
losses with
small dB/B

Large 
wetted 

area with 
big dB/B

New Approach to RE Mitigation has Demonstrated 
Safe Termination of High Energy Mature RE Beams
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• Phenomenology of the Benign Termination

• MHD Modeling of the Benign Termination

• Experimental Conditions to Access the Benign Termination

• Extrapolating the Scenario to ITER

A Novel Path to Runaway Electron Mitigation
-- Outline --
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Contrasting Conventional and New Approaches 
Highlights Key Differences

Conventional Approach:
• Collisional dissipation 

reduces RE current
• Loss occurs in more MHD 

stable situation (less dB)
• Localized & repetitive 

impacts (persistent HXR)

“D2 + Kink” Approach:
• Recombined plasma 

facilitates low qa access
• Access bigger & faster 

MHD kink instabilities
• Singular dispersed loss 

event for all REs
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• After D2 injection: REs can 
persist very long time
– Up to 5 seconds in DIII-D

• After crossing MHD 
instability boundary      
REs vanish in < 1 ms

Synchrotron Emission Confirms 
Full RE Termination on Sub-Millisecond Timescales
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1Y.Q. Liu et al, NF 2019 & PoP 2020

MHD Model + Orbit Following1 w/ Observed dB/B Levels 
Confirms Nearly all RE Orbits are Lost to the First Wall

• RE orbits followed in linear 
MHD eigenmode structure 
scaled to experimental dB/B

• dB/B at experimentally 
relevant values (~ 5%) 
causes most orbits to be lost 
to the first wall



9
C Paz-Soldan/IAEA-FEC/2021-05

MHD Model + Orbit Following1 w/ Observed dB/B Levels 
Confirms Nearly all RE Orbits are Lost to the First Wall

• RE orbits followed in linear 
MHD eigenmode structure 
scaled to experimental dB/B

• dB/B at experimentally 
relevant values (~ 5%) 
causes most orbits to be lost 
to the first wall

• RE kinetic energy disperses 
into a large surface area
– Reduced peak heat flux
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Improved Scenario for 
Kinetic Energy Handling

1Y.Q. Liu et al, NF 2019 & PoP 2020
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C. Liu et al, Phys. Plasmas (in preparation, 2021)
V. Bandaru et al, Plas. Phys. Contrl. Fus. 2021
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Extended MHD Modeling Reproduces 
RE à Ohmic Current Transfer in DIII-D and JET

• M3D-C1 and JOREK with 
RE fluid model deployed

• Near-total stochasticity 
found in both simulations
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Extended MHD Modeling Reproduces 
RE à Ohmic Current Transfer in DIII-D and JET

• M3D-C1 and JOREK with   
RE fluid model deployed

• Near-total stochasticity 
found in both simulations

• Prompt loss of REs drives 
current transfer to the bulk

• Dissipation of magnetic 
energy into line radiation
– … Not back into RE energy
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Magnetic Energy Handling

C. Liu et al, Phys. Plasmas (in preparation, 2021)
V. Bandaru et al, Plas. Phys. Contrl. Fus. 2021
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D2 Injection: 1) Facilitates Low Safety Factor Access
2) Accelerates Ideal MHD Growth Rate

• D2 cases tend to 
evolve to lower safety 
factor (more unstable)
– … not guaranteed
– … nor essential

• Key D2 affect: bulk 
recombination
– Decreases density
– Shortens Alfven time
– Accelerates MHD 

growth rates
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Controlled experiment of Z-effect at matched qa / IP
… Recombined (via D2) beam unique in terms of dB/dt

Z-effect @ same IP/qa:

• Recombined RE beam 
(D2): large dB/B and dB/dt   
@ stability boundary

• Helium RE beam: does not 
exhibit large dB/B and has 
conventional final loss

• Non-RE plasma ref: still 
had large dB/B but a 
much slower dB/dt

DIII-D
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D2 Quantity Scan Reveals Optimum Quantity for Big dB/B

Limits of D2 Quantity:

• Too Little: plasma does not 
recombine, remains 
collisional
– Weak dB/B spike

• Too Much: Plasma re-
ionizes after minor MHD 
events at higher qa
– Weak dB/B spike

• Just right: Robustly 
recombined but robust to 
the minor kink instabilities
– Strong dB/B spike

DIII-D
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Higher Ar Quantity Facilitates RE Beam Re-Avalanching

Increasing Ar Quantity:
(via primary injection)

• Is compatible with the 
recombined state and still 
allows large scale dB/B

• Increases radiation during 
the current quench (CQ) 
and thus accelerates it

• Fast CQ increases loop 
voltage that increases 
avalanche gain
– Via collisions w/ bound e-

• Remnant RE beams can re-
emerge at max Ar quantity
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Deuterium Injection Facilitates access to Low Safety Factor 
during Vertical Displacement Event

High-Z (Ar / He)
• Final loss instabilities begin 

at higher safety factor

D2 Injection:
• Current channel contracts 

without driving final loss

• Accesses low safety factor 
big dB/B phenomenology 
– After the stability 

boundary is crossed

DIII-D



18
C Paz-Soldan/IAEA-FEC/2021-05

Crossing Kink Stability Boundary via Different Paths:
IP-Dot appears un-important, BT-dot facilitates instability

IP-dot
• Large dB at q=2 for variety 

of IP-dot values
• Sub-dominant effect on 

MHD magnitude

BT-dot
• Surprisingly drives effect at 

qa=3, similar to JET cases
• Consistent with broader 

current profile facilitating 
instability
– JET current profiles 

thought to be broader1

DIII-D
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Computed Post-Disruption Evolution for ITER 
Finds Low Safety Factor is Robustly Accessed

• Expect q=3 to be 
crossed near 10 MA
– ~ 200 MJ Mag. Energy
– ~ 5 MJ Kin. Energy

• Comparable evolutions 
found with or without D2

• Lower RE current cases 
will have to compress 
further before access to 
q=3 or q=2

DINA ITER Simulations

K. Aleynikova et al, Plas. Phys. Rep. 2016
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RE Impact Wetted Area Must be High to Avoid Melting

• IR flash (DIII-D) and lack of 
IR heating (JET) provide 
boundaries on wetted area
– > 1% and < 10% of first wall

• MARS-F simulations predict 
very large wetted areas
– > 10 % of first wall

• ITER requires greater than 
3% to avoid surface melt
– >1% to avoid deep melting



22
C Paz-Soldan/IAEA-FEC/2021-05

DIII-D and JET Avoid Large Avalanche Gain with D2
ITER Will be Unable to Avoid Significant Gain

• D2 reduces Ar quantity through “purging” phenomenon
– Less avalanche gain since fewer bound electron secondary targets

• JET @ high Ar / high avalanche gain: remnant RE beam is re-born
– Suggests RE remnant at high Ar quantity is not less than 1/105 of initial

• ITER: Even only 1/1020 surviving, expect significant remnant re-birth
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New Approach Deployment in ITER DMS
Will Likely Involve Multiple Loss Events (& Pellets?)

• Candidate scheme 
foresees multiple, but 
benign, loss events 

• Goal: keep 
recombination & 
promote large MHD

• Will multiple H2 injections 
be required?

Validation Needed
@ High RE Current / Gain
… in ITER Pre-FPO Phase

Candidate ITER DMS Scheme


