A Novel Path to Runaway Electron Mitigation via **Deuterium Injection and Current-Driven Kink Instability**

Produced by: C. Paz-Soldan¹

On behalf of:

(MJ/m²) C. Reux², Y.Q. Liu³, N. Eidietis³, S. Silburn⁴, K. Aleynikova⁵, P. Aleynikov⁵, S. Sridhar², E. Joffrin², A. Lvovskiy³, L. Bardoczi³, X. Du³, S. Gerasimov⁴, F. Rimini⁴, G. Szepesi⁴, Flux V. Bandaru⁵, M. Hoelzl⁵, G. Papp⁵, G. Pautasso⁵, L. Baylor⁶, D. Del-Castillo Negrete⁶, D. Spong⁶, E. Hollmann⁷, Z. Popovic⁷, I. Bykov⁷, C. Liu⁸, C. Zhao⁸, Energy S. Jardin⁸, S. Jachmich⁹, M. Lehnen⁹, O. Ficker¹⁰, E. Macusova¹⁰, D. Carnevale¹¹, C. Sommariva¹², A. Manzanares¹³, the DIII-D Team and JET Contributors* ¹Department of App Physics and App Math, Columbia University, NY, USA ²IRFM-CEA/Cadarache, St. Paul lez Durance, France ³General Atomics, San Diego, CA 92186-5608, USA Peak ⁴UKAEA/CCFE, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK ⁵Max-Planck Institute for Plasma Physics, Greifswald & Garching, Germany 60ak Ridge National Laboratory, Oak Ridge, TN 37831, USA ⁷University of California San Diego La Jolla, CA 92093-0417, USA ⁸Princeton Plasma Physics Laboratory Princeton, New Jersey 08543-0451, USA ⁹ITER Organization, Cadarache Centre, St. Paul lez Durance, France ¹⁰Institute of Plasma Physics of the CAS, Prague, Czech Republic ¹¹Dipartimento di Ing. Civile e Ing. Informatica, Universita di Roma Tor Vergata Rome, Italy ¹²Ecole Polytechnique Fed. de Lausanne (EPFL), Swiss Plasma Center (SPC), Switzerland ¹³CIEMAT, Madrid, Spain, *See the author list of E. Joffrin et al. 2019 Nucl. Fusion 59 112021

Presented at: IAEA-FEC Conference (Remote) May 14th 2021

JET Infrared Thermography 12 10 Collisional (High-Z) 8 (in-between) "D₂ + Kink" Approach 6 Approx. ITER Limit 2 ~ 50x More Energ Noise Floor 0 3 0 2 5 Magnetic Energy at Loss (MJ)

> COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

New Approach to RE Mitigation has Demonstrated Safe Termination of High Energy Mature RE Beams

C Paz-Soldan/IAEA-FEC/2021-05

Conventional Approach:

- Inject High-Z (Ar/Ne)
- Collisionally dissipate REs

New Approach:^{1,2}

- Inject $D_2 \rightarrow$ collisionless
 - via high-Z expulsion and bulk recombination³
- Access bigger & faster MHD kink instabilities
- ~100% REs instantaneously dumped to the first wall

Only New Approach Avoids First Wall Heating

t-t_{loss} (ms) ¹C. Reux et al, Phys. Rev. Lett 2021 ²C. Paz-Soldan et al, Plas. Phys. Contrl. Fus 2019 ³E. Hollmann et al, Phys. Plasma 2020

- Phenomenology of the Benign Termination
- MHD Modeling of the Benign Termination
- Experimental Conditions to Access the Benign Termination
- Extrapolating the Scenario to ITER

- Phenomenology of the Benign Termination
- MHD Modeling of the Benign Termination
- Experimental Conditions to Access the Benign Termination
- Extrapolating the Scenario to ITER

Contrasting Conventional and New Approaches Highlights Key Differences

Conventional Approach:

- Collisional dissipation reduces RE current
- Loss occurs in more MHD stable situation (less δB)
- Localized & repetitive impacts (persistent HXR)

<u>"D2 + Kink" Approach:</u>

- Recombined plasma facilitates low q_a access
- Access bigger & faster MHD kink instabilities
- Singular dispersed loss event for all REs

C Paz-Soldan/IAEA-FEC/2021-05

Synchrotron Emission Confirms Full RE Termination on Sub-Millisecond Timescales

 After D₂ injection: REs can persist very long time

- Up to 5 seconds in DIII-D

 After crossing MHD instability boundary REs vanish in < 1 ms

- Phenomenology of the Benign Termination
- MHD Modeling of the Benign Termination
- Experimental Conditions to Access the Benign Termination
- Extrapolating the Scenario to ITER

MHD Model + Orbit Following¹ w/ Observed $\delta B/B$ Levels Confirms Nearly all RE Orbits are Lost to the First Wall

- RE orbits followed in linear MHD eigenmode structure scaled to experimental δB/B
- δB/B at experimentally relevant values (~ 5%) causes most orbits to be lost to the first wall

EURO*fusion*

8

MHD Model + Orbit Following¹ w/ Observed $\delta B/B$ Levels Confirms Nearly all RE Orbits are Lost to the First Wall

- RE orbits followed in linear MHD eigenmode structure scaled to experimental δB/B
- δB/B at experimentally relevant values (~ 5%) causes most orbits to be lost to the first wall
- RE kinetic energy disperses into a large surface area
 - Reduced peak heat flux

Improved Scenario for Kinetic Energy Handling

JROfusion

Extended MHD Modeling Reproduces RE -> Ohmic Current Transfer in DIII-D and JET

- M3D-C1 and JOREK with **RE fluid model deployed**
- Near-total stochasticity found in both simulations

10

C Paz-Sol

Extended MHD Modeling Reproduces RE -> Ohmic Current Transfer in DIII-D and JET

- M3D-C1 and JOREK with RE fluid model deployed
- Near-total stochasticity found in both simulations
- Prompt loss of REs drives current transfer to the bulk
- Dissipation of magnetic energy into line radiation

 ... Not back into RE energy

Ideal Scenario for Magnetic Energy Handling

UR()tusion

C Paz-Sol

C. Liu et al, Phys. Plasmas (in preparation, 2021) V. Bandaru et al, Plas. Phys. Contrl. Fus. 2021

- Phenomenology of the Benign Termination
- MHD Modeling of the Benign Termination

Experimental Conditions to Access the Benign Termination

• Extrapolating the Scenario to ITER

D₂ Injection: 1) Facilitates Low Safety Factor Access 2) Accelerates Ideal MHD Growth Rate

- D₂ cases tend to evolve to lower safety factor (more unstable)
 - ... not guaranteed
 - … nor essential
- Key D₂ affect: bulk recombination

13

- Decreases density
- Shortens Alfven time
- Accelerates MHD growth rates

Controlled experiment of Z-effect at matched qa / IP ... Recombined (via D_2) beam unique in terms of dB/dt

<u>Z-effect @ same IP/qa:</u>

- Recombined RE beam
 (D₂): large δB/B and dB/dt
 @ stability boundary
- Helium RE beam: does not exhibit large δB/B and has conventional final loss
- Non-RE plasma ref: still had large δB/B but a much slower dB/dt

D2 Quantity Scan Reveals Optimum Quantity for Big $\delta B/B$

Limits of D2 Quantity:

- Too Little: plasma does not recombine, remains collisional
 - Weak $\delta B/B$ spike
- Too Much: Plasma reionizes after minor MHD events at higher q_a
 - Weak $\delta B/B$ spike
- Just right: Robustly recombined but robust to the minor kink instabilities
 - Strong $\delta B/B$ spike

DIII-D

Higher Ar Quantity Facilitates RE Beam Re-Avalanching

Increasing Ar Quantity:

(via primary injection)

- Is compatible with the recombined state and still allows large scale δB/B
- Increases radiation during the current quench (CQ) and thus accelerates it
- Fast CQ increases loop voltage that increases avalanche gain
 - Via collisions w/ bound e⁻
- Remnant RE beams can reemerge at max Ar quantity

Deuterium Injection Facilitates access to Low Safety Factor during Vertical Displacement Event

DIII-D

<u>High-Z (Ar / He)</u>

Final loss instabilities begin at higher safety factor

D2 Injection:

- Current channel contracts
 without driving final loss
- Accesses low safety factor big δB/B phenomenology
 - After the stability boundary is crossed

Crossing Kink Stability Boundary via Different Paths: IP-Dot appears un-important, BT-dot facilitates instability

IP-dot

- Large dB at q=2 for variety of IP-dot values
- Sub-dominant effect on MHD magnitude

BT-dot

- Surprisingly drives effect at $_{\wedge}$ qa=3, similar to JET cases
- Consistent with broader current profile facilitating instability
 - JET current profiles thought to be broader¹

0

t-t_{loss} (ms)

0

t-t_{loss} (ms)

DIII-D

- Phenomenology of the Benign Termination
- MHD Modeling of the Benign Termination
- Experimental Conditions to Access the Benign Termination
- Extrapolating the Scenario to ITER

Computed Post-Disruption Evolution for ITER Finds Low Safety Factor is Robustly Accessed

DINA ITER Simulations

Expect q=3 to be crossed near 10 MA

- ~ 200 MJ Mag. Energy
- ~ 5 MJ Kin. Energy
- Comparable evolutions found with *or* without D₂
- Lower RE current cases will have to compress further before access to q=3 or q=2

K. Aleynikova et al, Plas. Phys. Rep. 2016

RE Impact Wetted Area Must be High to Avoid Melting

 IR flash (DIII-D) and lack of IR heating (JET) provide boundaries on wetted area

- > 1% and < 10% of first wall</p>

- MARS-F simulations predict very large wetted areas
 - > 10 % of first wall
- ITER requires greater than 3% to avoid surface melt

>1% to avoid deep melting

RE Loss Wetted Area (% of First Wall)

DIII-D and JET Avoid Large Avalanche Gain with D₂ ITER Will be Unable to Avoid Significant Gain

- D2 reduces Ar quantity through "purging" phenomenon
 - Less avalanche gain since fewer bound electron secondary targets
- JET @ high Ar / high avalanche gain: remnant RE beam is re-born
 - Suggests RE remnant at high Ar quantity is not less than 1/10⁵ of initial
- ITER: Even only 1/10²⁰ surviving, expect significant remnant re-birth

New Approach Deployment in ITER DMS Will Likely Involve Multiple Loss Events (& Pellets?)

- Candidate scheme foresees multiple, but benign, loss events
- Goal: keep recombination & promote large MHD
- Will multiple H₂ injections be required?

Validation Needed @ High RE Current / Gain ... in ITER Pre-FPO Phase

Candidate ITER DMS Scheme

