Both concepts handle similar thermal heating power (P_{heat}), and require large total radiation fraction ($f_{\text{rad}} = P_{\text{rad}}/P_{\text{heat}} \geq 80\%$) in order to reduce the peak heat load ($\leq 10 \text{ MWm}^{-2}$).

Divertor power handling is determined by requirements of $f_{\text{rad}}^\text{main}$ and the plasma performance.

JA DEMO challenge (steady-state operation):
Lower I_p and higher HH with ITER-level $f_{\text{rad}}^\text{main}$

\Rightarrow Large divertor power handling: $P_{\text{sep}}/R \sim 30\text{ MWm}^{-1}$

EU DEMO challenge (pulse operation):
Higher I_p and ITER-level HH with large $f_{\text{rad}}^\text{main}$ by high-Z seeding

\Rightarrow ITER-level $P_{\text{sep}}/R = 17\text{ MWm}^{-1}$

Same leg length (1.6 m: longer than ITER) but different geometry (JA: ITER-like closer baffle, EU: rather open without dome and baffle) were proposed as baseline designs.

Power exhaust simulations of P_{sep} ~ JA: 250-300 MW, EU: 150-200MW

with Ar seeding have been performed

Integrated design of divertor target, cassette and coolant pipe routing has been developed:
water cooled ITER-like target (W-PFC and Cu-alloy heat sink) is a common baseline design.