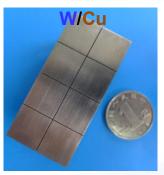
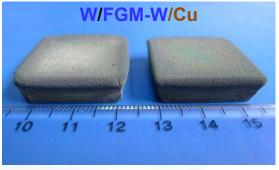
An overview of thick tungsten coating prepared by chemical vapor deposition and manufacture of relevant mockup

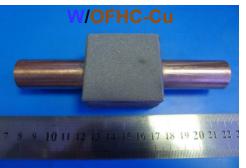
Z. Chen¹, Y. Li², L. Cheng³, Y.Y. Lian¹, X. Liu¹, F. Feng¹, J.B. Wang¹, Y. Tan¹, T.W. Morgan², B.Y. Yan⁴, J.P. Song⁴, Z.L. Wang⁵, X.Q. Ye⁵

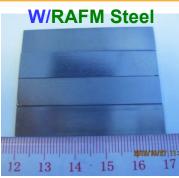
¹Southwestern Institute of Physics

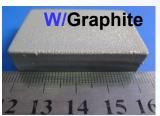
²DIFFER—Dutch Institute for Fundamental Energy Research

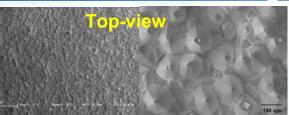

³Beihang University

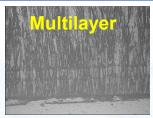

⁴Xiamen Tungsten Co., Ltd.

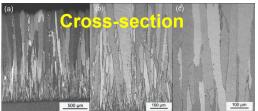

⁵Science and Technology on Surface Physics and Chemistry Laboratory

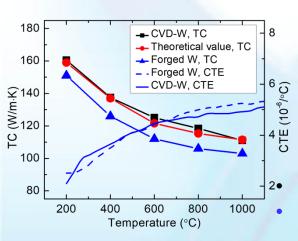



CVD-W: preparation, purity, TC, and CTE





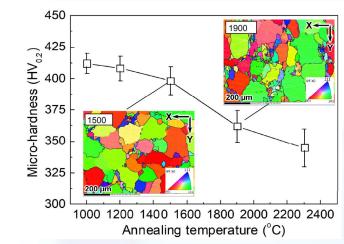




Controllable preparation of CVD-W coatings on different substrates has been achieved.

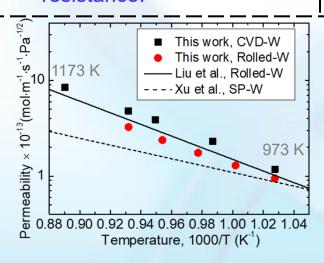
Element	C	Element	C	Element	C	Element	С
С	<5	Al	0.03	Cr	0.08	Ni	0.02
O	< 10	S	0.02	Fe	0.01	Zn	0.02
N	< 5	Ca	0.03	Ti	0.002	Co	0.008
Ta	< 1	Hg	< 0.1	Re	< 0.05	F	< 0.01
Th	< 0.0001	U	< 0.0001	Others	< 0.38	W	Matrix
C is the concentration of an element with a unit in wt. 10 ⁻⁴ %					• Pu	ırity ≥99	9.99%

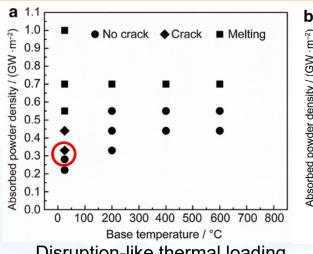
Comparable thermal conductivity (TC) to the theoretical value of W.

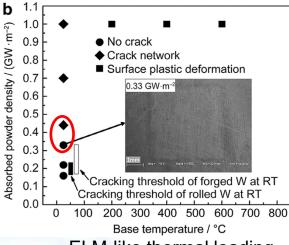

≥670°C, lower coefficient of thermal expansion (CTE) vs forged-W

J. Nucl. Mater. 457 (2015) 317

Tungsten (2020) 2:83-93




Thermal stability, transient heat flux, permeability



Annealing: 1200-2300 °C, 3 h

Excellent recrystallization resistance.

Disruption-like thermal loading

ELM-like thermal loading

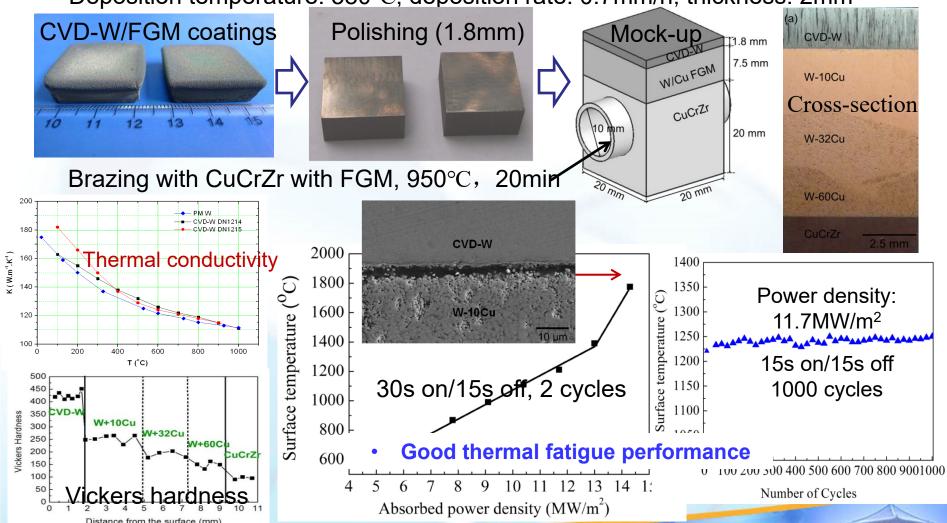

- CVD-W: cracking threshold at RT, 0.28–0.33 GW·m⁻².
- CVD-W: cracking threshold at RT, 0.33–0.44 GW·m⁻².

$$\Phi_{CVD-W} = 1.44 \times 10^{-7} \exp\left(-\frac{1.17eV}{kT}\right), \text{mol} \cdot \text{m}^{-1} \cdot \text{s}^{-1} \cdot \text{Pa}^{-1/2}$$

$$\Phi_{rolled-W} = 7.14 \times 10^{-8} \exp\left(-\frac{1.14eV}{kT}\right), \text{mol} \cdot \text{m}^{-1} \cdot \text{s}^{-1} \cdot \text{Pa}^{-1/2}$$

 D permeability of the CVD-W was higher than commercial pure W, while their activation energy values were almost the same.

Appl. Surf. Sci. 390 (2016) 167-174; J. Nucl. Mater. 455 (2014) 371-375

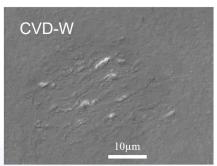


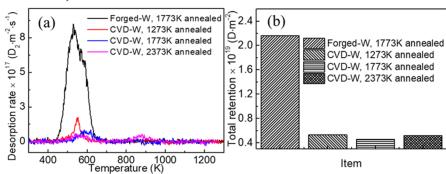
Thermal fatigue

CVD-W/FGM/CuCrZr component

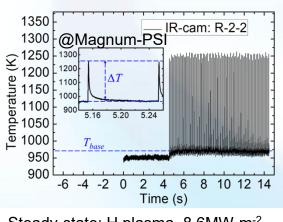
Fusion Eng. Des. 88 (2013) 1694-1698

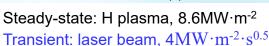
Deposition temperature: 580°C, deposition rate: 0.7mm/h, thickness: 2mm



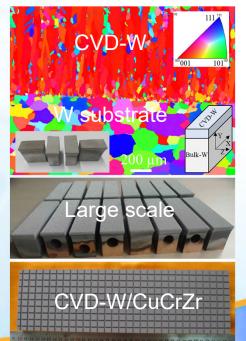


D plasma exposure, steady-state and transient, mockups


@Magnum-PSI, 50 eV, 823 K, Te=1.65 eV, ne = 4.73×10^{19} m⁻³, Fluence= 1.02×10^{26} m⁻²



CVD-W: a mitigated blistering behavior, lower D retention VS the forged-W.



Commercial pure W 20 µm 50 µm CVD-W 20 µm

CVD-W: smoother surface

- Strong grain orientation dependence of surface degradation
 - Degradation preferentially occurred on the planes close to (101)

Summary (2)

- 1. CVD (chemical vapor deposition)-W on different substrates including Cu, RAFM steel, and graphite are successfully prepared.
- 2. The CVD-W showed an excellent recrystallization resistance and a good thermal fatigue performance. In addition, a mitigated blistering and low D retention characteristics were confirmed. The CVD-W showed a higher D permeability compared to the commercial pure W counterpart.
- 3. The surface degradation induced by steady-state and transient heat flux exhibited a strong grain orientation dependence.
- 4. The large-scale CVD-W/CuCrZr mockups have also been developed. The preparation and heat loading tests of the CVD-W based water-cooled mono-block are undergoing.

