Advanced Multi-Step Brazing (AMSB) for Fabrication of the Divertor Heat Removal Component

M. Tokitania, Y. Hamajia, Y. Hiraokab, S. Masuzakia, H. Tamuraa, H. Notoa, T. Tanakaa, T. Tsuneyoshic, Y. Tsujic, T. Murogaa, A. Sagaraa and the FFHR Design Groupa

a National Institute for Fusion Science
b Okayama University of Science
c Nagoya University
1. Advanced Brazing Technique (ABT)
 - Idea of the microstructural manipulation for the W/ODS-Cu joint
 - Joint mechanism

2. Advanced Multi-Step Brazing (AMSB)
 - Requirement for the new type divertor heat removal component
 - Four conditions for obtaining the joint structure of the new type divertor heat removal component
 - Development of the AMSB and fabrication procedures of the new type divertor heat removal component
 - Heat removal capability of the new type divertor heat removal component
1. **Advanced Brazing Technique (ABT)**
 - Idea of the microstructural manipulation for the W/ODS-Cu joint
 - Joint mechanism

2. **Advanced Multi-Step Brazing (AMSB)**
 - Requirement for the new type divertor heat removal component
 - Four conditions for obtaining the joint structure of the new type divertor heat removal component
 - Development of the AMSB and fabrication procedures of the new type divertor heat removal component
 - Heat removal capability of the new type divertor heat removal component
Reliable joint is required between “W” and “Cu alloy” however, joint procedure is difficult. Large deviation of the CTE

- W: 4.3 μ/K
- Cu alloy: 16.5 μ/K

To absorb the large deviation of the CTE

There are a lot of disadvantages:
- Degradation of the physical and mechanical properties of Cu inter layer by the neutron dose.
- Degradation of the thermal conductivity due to the multiple interface between dissimilar materials.
- High manufacturing costs.

We challenged Direct brazing (this study)
1. During the bonding heat treatment with 960°C, the ODS-Cu (GlidCop®) bulk only near the bonding surface satisfies the eutectic reaction (Cu-P) for a short time.

2. The surface of the ODS-Cu (GlidCop®) bulk is melted, and melted material tightly sticks to the W bulk through the anchor effect.
1. During the bonding heat treatment with 960°C, the ODS-Cu (GlidCop®) bulk only near the bonding surface satisfies the eutectic reaction (Cu-P) for a short time.

2. The surface of the ODS-Cu (GlidCop®) bulk is melted, and melted material tightly sticks to the W bulk through the anchor effect.
Contents

1. Advanced Brazing Technique (ABT)
 - Idea of the microstructural manipulation for the W/ODS-Cu joint
 - Joint mechanism

2. Advanced Multi-Step Brazing (AMSB)
 - Requirement for the new type divertor heat removal component
 - Four conditions for obtaining the joint structure of the new type divertor heat removal component
 - Development of the AMSB and fabrication procedures of the new type divertor heat removal component
 - Heat removal capability of the new type divertor heat removal component
Requirement for the "new type divertor heat removal component"

Ideal cooling structure

1. Rectangular-shaped cooling flow path
2. V-shaped staggered rib structure

- Industrially applied technology, e.g., gas turbine blade etc.
- The swirling turbulent flow is generated due to the effect of the V-shaped rib structure.

"New type divertor heat removal component"

Longitudinal cross-section

The leak-tight joint is difficult to create in the conventional technologies.

T. Tsuneyoshi et al., JSFM 2015, C11-1.
Requirement for the "new type divertor heat removal component"

Ideal cooling structure

1. Rectangular-shaped cooling flow path
2. V-shaped staggered rib structure

- Industrially applied technology, e.g., gas turbine blade etc.
- The swirling turbulent flow is generated due to the effect of the V-shaped rib structure.

Four conditions

1. The joints are completely leak-tight.
2. The joints have areal contact, not line- or spot-like contact.
3. The joints withstand against “thermal stress” and “water pressure”.
4. The joints do not degrade even after a repetitive (brazing) heat treatment.

The leak-tight joint is difficult to create in the conventional technologies.
Leak tight joint method by applying the advanced brazing

① GlidCop®/GlidCop® ② SUS/GlidCop®

Same method is applied

Uniform compressive load: 0.54 MPa + Developed heat treatment

Flow path model

Filler material:
BNi-6 (Ni-11%P) t=38μm

GlideCop®

GlideCop®

GlideCop®

80
48
50

SUS bolts
Carbon springs
Carbon flanges (t=25mm)

Sample

UT image

“Defects free joint” with wide area

Leak tight joint in an areal condition was achieved.
Leak tight joint method by applying the advanced brazing

Uniform compressive load: 0.54 MPa + Developed heat treatment

Flow path model

Filler material: BNi-6 (Ni-11%P) t=38μm

1. The joints are completely leak-tight.
2. The joints have areal contact, not line- or spot-like contact.
3. The joints withstand against “thermal stress” and “water pressure”.
4. The joints do not degrade even after a repetitive (brazing) heat treatment.

Leak tight joint in an areal condition was achieved.

Quality of the leak-tight sealing joint

1. GlidCop® / GlidCop®

2. SUS/GlidCop®

(a) Three-point bending test

- Very narrow bonding layers of ODS-Cu/ODS-Cu and SUS/ODS-Cu were obtained.
- Strength of the bonding layers were as high as the original ODS-Cu (GlidCop®).
- Microstructures and joint strength does not show any sign of the degradation even after the 2nd time heat treatment.
Quality of the leak-tight sealing joint

1. The joints are completely leak-tight.
2. The joints have areal contact, not line- or spot-like contact.
3. The joints withstand against “thermal stress” and “water pressure”.
4. The joints do not degrade even after a repetitive (brazing) heat treatment.

- Very narrow bonding layers of ODS-Cu/ODS-Cu and SUS/ODS-Cu were obtained.
- Strength of the bonding layers were as high as the original ODS-Cu (GlidCop®).
- Microstructures and joint strength does not show any sign of the degradation even after the 2nd time heat treatment.

Breakthrough: cleared the four conditions

1. The joints are completely leak-tight.
2. The joints have areal contact, not line- or spot-like contact.
3. The joints withstand against “thermal stress” and “water pressure”.
4. The joints do not degrade even after a repetitive (brazing) heat treatment.

Judgement:
The “new type divertor heat removal component”

Ideal cooling structure
(1) Rectangular-shaped cooling flow path
(2) V-shaped staggered rib structure

→ can be fabricated
Advanced Multi-Step Brazing (AMSB) was developed

Type I

(1) GlidCop®/GlidCop® → (2) SUS/GlidCop® → Machining → (3) W/GlidCop® → SUS pipe welding

Advanced brazing

Three-step brazing

The “new type divertor heat removal component” was successfully fabricated.

Patented:
No. 6528257
No. 6606661

Advanced Multi-Step Brazing (AMSB) was developed. Two-step brazing, the "new type divertor heat removal component" was successfully fabricated.

Advantages of AMSB

– Manufacturing advantages:

1. The joints are completely leak-tight.
2. The joints have areal contact, not line- or spot-like contact.
3. The joints withstand against “thermal stress” and “water pressure”.
4. The joints do not degrade even after a repetitive (brazing) heat treatment.

“Structural advantages” can be realized by “Manufacturing advantages”

– Structural advantages:

1. Rectangular-shaped cooling flow path + V-shaped staggered rib structure
2. Micro stand edge structure
3. Narrow joint width (~3.5 mm) + Partition wall
Extremely high heat removal capability: ~30MW/m²

- New type AMSB divertor component
- Rectangular-shaped cooling flow path
- V-shaped staggered rib structure

Type II

V-shaped staggered rib structure

GlidCop®

SUS

Rectangular shape fluid flow path

Swirling turbulent flow is generated

Water velocity:

Velocity u [m/s]

- 27
- 16
- 5
- 0
- -6
- -17

Heat load [MW/m²]

W

Heat removal performance

1. The concept of the new type divertor heat removal component was proposed.

2. The leak-tight joint method of GlidCop®/GlidCop® and SUS/GlidCop® was developed by applying the advanced brazing technique (ABT).

3. **Advanced Multi-Step Brazing (AMSB)** was developed, and the new type divertor heat removal component was successfully produced. *(Patented: No. 6528257, 6606661)*

4. The new component demonstrated an extremely high heat removal capability under the ~30 MW/m² steady state heat loading.
An overview of thick tungsten coating prepared by chemical vapor deposition and manufacture of relevant mockup

Z. Chen¹, Y. Li², L. Cheng³, Y.Y. Lian¹, X. Liu¹, F. Feng¹, J.B. Wang¹, Y. Tan¹, T.W. Morgan², B.Y. Yan⁴, J.P. Song⁴, Z.L. Wang⁵, X.Q. Ye⁵

¹Southwestern Institute of Physics
²DIFFER—Dutch Institute for Fundamental Energy Research
³Beihang University
⁴Xiamen Tungsten Co., Ltd.
⁵Science and Technology on Surface Physics and Chemistry Laboratory
CVD-W: preparation, purity, TC, and CTE

- Controllable preparation of CVD-W coatings on different substrates has been achieved.
- Comparable thermal conductivity (TC) to the theoretical value of W.
- \(\geq 670^\circ C \), lower coefficient of thermal expansion (CTE) vs forged-W.
- Purity \(\geq 99.99\% \)

Tungsten (2020) 2:83–93
Thermal stability, transient heat flux, permeability

Annealing: 1200–2300 °C, 3 h

- Excellent recrystallization resistance.

Disruption-like thermal loading

- CVD-W: cracking threshold at RT, 0.28–0.33 GW·m⁻².
- CVD-W: cracking threshold at RT, 0.33–0.44 GW·m⁻².

ELM-like thermal loading

\[\Phi_{CVD-W} = 1.44 \times 10^{-7} \exp \left(-\frac{1.17eV}{kT} \right), \text{mol} \cdot \text{m}^{-1} \cdot \text{s}^{-1} \cdot \text{Pa}^{-1/2} \]

\[\Phi_{rolled-W} = 7.14 \times 10^{-8} \exp \left(-\frac{1.14eV}{kT} \right), \text{mol} \cdot \text{m}^{-1} \cdot \text{s}^{-1} \cdot \text{Pa}^{-1/2} \]

- D permeability of the CVD-W was higher than commercial pure W, while their activation energy values were almost the same.

Thermal fatigue

CVD-W/FGM/CuCrZr component

Deposition temperature: 580°C, deposition rate: 0.7mm/h, thickness: 2mm

CVD-W/FGM coatings → Polishing (1.8mm) → Mock-up

Brazing with CuCrZr with FGM, 950°C, 20min

Cross-section

Thermal conductivity

Vickers hardness

Power density: 11.7MW/m²
15s on/15s off 1000 cycles

• Good thermal fatigue performance

30s on/15s off, 2 cycles

China National Nuclear Corporation
Steady-state: H plasma, 8.6 MW \cdot m^{-2}

Transient: laser beam, 4 MW \cdot m^{-2} \cdot s^{0.5}

@Magnum-PSI

Commercial pure W

Forged-W

CVD-W

CVD-W: a mitigated blistering behavior, lower D retention VS the forged-W.

CVD-W: smoother surface

- Strong grain orientation dependence of surface degradation
- Degradation preferentially occurred on the planes close to (101)
1. CVD (chemical vapor deposition)-W on different substrates including Cu, RAFM steel, and graphite are successfully prepared.

2. The CVD-W showed an excellent recrystallization resistance and a good thermal fatigue performance. In addition, a mitigated blistering and low D retention characteristics were confirmed. The CVD-W showed a higher D permeability compared to the commercial pure W counterpart.

3. The surface degradation induced by steady-state and transient heat flux exhibited a strong grain orientation dependence.

4. The large-scale CVD-W/CuCrZr mockups have also been developed. The preparation and heat loading tests of the CVD-W based water-cooled mono-block are undergoing.