#### Advanced Multi-Step Brazing (AMSB) for Fabrication of the Divertor Heat Removal Component



M. Tokitani<sup>a</sup>, Y. Hamaji<sup>a</sup>, Y. Hiraoka<sup>b</sup>, S. Masuzaki<sup>a</sup>, H. Tamura<sup>a</sup>, H. Noto<sup>a</sup>, T. Tanaka<sup>a</sup>, T. Tsuneyoshi<sup>c</sup>, Y. Tsuji<sup>c</sup>, T. Muroga<sup>a</sup>, A. Sagara<sup>a</sup> and the FFHR Design Group<sup>a</sup>

<sup>a</sup> National Institute for Fusion Science
<sup>b</sup> Okayama University of Science
<sup>c</sup> Nagoya University

**TECH/3** 

### Contents

#### 1. Advanced Brazing Technique (ABT)

- Idea of the microstructural manipulation for the W/ODS-Cu joint
- Joint mechanism

## 2. <u>Advanced Multi-Step Brazing (AMSB</u>)

- Requirement for the <u>new type divertor heat removal component</u>
- Four conditions for obtaining the joint structure of the <u>new type divertor</u> <u>heat removal component</u>
- Development of the AMSB and fabrication procedures of the <u>new type</u> <u>divertor heat removal component</u>
- Heat removal capability of the <u>new type divertor heat removal component</u>

## Contents

#### 1. Advanced Brazing Technique (ABT)

- Idea of the microstructural manipulation for the W/ODS-Cu joint
- Joint mechanism

## 2. <u>Advanced Multi-Step Brazing (AMSB)</u>

- Requirement for the <u>new type divertor heat removal component</u>
- Four conditions for obtaining the joint structure of the <u>new type divertor</u> <u>heat removal component</u>
- Development of the AMSB and fabrication procedures of the <u>new type</u> divertor heat removal component
- Heat removal capability of the <u>new type divertor heat removal component</u>

#### "W/Cu alloy" divertor heat removal component



#### **Advanced brazing technique (ABT)**



M. Tokitani et al., Nucl. Fusion 57 (2017) 076009.

- 1. During the bonding heat treatment with 960°C, the ODS-Cu (GlidCop<sup>®</sup>) bulk only near the bonding surface satisfies the eutectic reaction (Cu-P) for a short time.
- 2. The surface of the ODS-Cu (GlidCop<sup>®</sup>) bulk is melted, and melted material tightly sticks to the W bulk through the anchor effect.

#### Advanced brazing technique (ABT)



M. Tokitani et al., Nucl. Fusion 57 (2017) 076009.

- 1. During the bonding heat treatment with 960°C, the ODS-Cu (GlidCop<sup>®</sup>) bulk only near the bonding surface satisfies the eutectic reaction (Cu-P) for a short time.
- 2. The surface of the ODS-Cu (GlidCop<sup>®</sup>) bulk is melted, and melted material tightly sticks to the W bulk through the anchor effect.

## Contents

#### **1. Advanced Brazing Technique (ABT)**

- Idea of the microstructural manipulation for the W/ODS-Cu joint
- Joint mechanism

## 2. <u>Advanced Multi-Step Brazing (AMSB</u>)

- Requirement for the <u>new type divertor heat removal component</u>
- Four conditions for obtaining the joint structure of the <u>new type divertor</u> <u>heat removal component</u>
- Development of the AMSB and fabrication procedures of the <u>new type</u> <u>divertor heat removal component</u>
- Heat removal capability of the <u>new type divertor heat removal component</u>

#### Requirement for the "new type divertor heat removal component"



#### Requirement for the "new type divertor heat removal component"





#### Leak tight joint method by applying the advanced brazing



#### Leak tight joint method by applying the advanced brazing



Leak tight joint in an areal condition was achieved.

7/20

#### **Quality of the leak-tight sealing joint**



Very narrow bonding layers of ODS-Cu/ODS-Cu and SUS/ODS-Cu were obtained.
Strength of the bonding layers were as high as the original ODS-Cu (GlidCop<sup>®</sup>).
Microstructures and joint strength does not show any sign of the degradation even after the 2nd time heat treatment.

#### **Quality of the leak-tight sealing joint**



Strength of the bonding layers were as high as the original ODS-Cu (GlidCop<sup>®</sup>).

Microstructures and joint strength does not show any sign of the degradation even after the 2nd time heat treatment.

#### **Breakthrough: cleared the four conditions**

- 1. The joints are completely leak-tight.
- **2.** The joints have areal contact, not line- or spot-like contact.
- 3. The joints withstand against "thermal stress" and "water pressure".
- ) 4. The joints do not degrade even after a repetitive (brazing) heat treatment.

#### Judgement : The "new type divertor heat removal component"



## <u>Advanced</u> <u>Multi-Step</u> <u>Brazing</u> (<u>AMSB</u>) was developed



## <u>Advanced</u> <u>Multi-Step</u> <u>Brazing</u> (<u>AMSB</u>) was developed



# **Advantages of AMSB**

### – Manufacturing advantages:

- 1. The joints are completely leak-tight.
- **2.** The joints have areal contact, not line- or spot-like contact.
- 3. The joints withstand against "thermal stress" and "water pressure".
- ) 4. The joints do not degrade even after a repetitive (brazing) heat treatment.

"Structural advantages" can be realized by "Manufacturing advantages"

#### – Structural advantages:

- Rectangular-shaped cooling flow path + V-shaped staggered rib structure
- 2. Micro stand edge structure
- 3. Narrow joint width (~3.5 mm)+ Partition wall



#### Extremely high heat removal capability: ~30MW/m<sup>2</sup>



- 1. The concept of the new type divertor heat removal component was proposed.
- 2. The leak-tight joint method of GlidCop<sup>®</sup>/GlidCop<sup>®</sup> and SUS/GlidCop<sup>®</sup> was developed by applying the advanced brazing technique (ABT).
- 3. <u>Advanced Multi-Step Brazing (AMSB)</u> was developed, and the new type divertor heat removal component was successfully produced. (Patented: No. 6528257, 6606661)
- 4. The new component demonstrated an extremely high heat removal capability under the ~30 MW/m<sup>2</sup> steady state heat loading.



#### An overview of thick tungsten coating prepared by chemical vapor deposition and manufacture of relevant mockup

Z. Chen<sup>1</sup>, Y. Li<sup>2</sup>, L. Cheng<sup>3</sup>, Y.Y. Lian<sup>1</sup>, X. Liu<sup>1</sup>, F. Feng<sup>1</sup>, J.B. Wang<sup>1</sup>, Y. Tan<sup>1</sup>, T.W. Morgan<sup>2</sup>, B.Y. Yan<sup>4</sup>, J.P. Song<sup>4</sup>, Z.L. Wang<sup>5</sup>, X.Q. Ye<sup>5</sup>

<sup>1</sup>Southwestern Institute of Physics
<sup>2</sup>DIFFER—Dutch Institute for Fundamental Energy Research
<sup>3</sup>Beihang University
<sup>4</sup>Xiamen Tungsten Co., Ltd.
<sup>5</sup>Science and Technology on Surface Physics and Chemistry Laboratory

**China National Nuclear Corporation** 



#### **CVD-W:** preparation, purity, TC, and CTE



#### Controllable preparation of CVD-W coatings on different substrates has been achieved.



J. Nucl. Mater. 457 (2015) 317

| Element | С        | Element | С        | Element | С      | Element | С      |
|---------|----------|---------|----------|---------|--------|---------|--------|
| С       | <5       | Al      | 0.03     | Cr      | 0.08   | Ni      | 0.02   |
| 0       | < 10     | S       | 0.02     | Fe      | 0.01   | Zn      | 0.02   |
| N       | <5       | Ca      | 0.03     | Ti      | 0.002  | Co      | 0.008  |
| Та      | <1       | Hg      | < 0.1    | Re      | < 0.05 | F       | < 0.01 |
| Th      | < 0.0001 | U       | < 0.0001 | Others  | < 0.38 | W       | Matrix |

C is the concentration of an element with a unit in wt.  $10^{-4}$ %

• Purity ≥99.99%

Comparable thermal conductivity (TC) to the theoretical value of W.  $\geq$ 670°C, lower coefficient of thermal expansion (CTE) vs forged-W

Tungsten (2020) 2:83–93

#### China National Nuclear Corporation



#### Thermal stability, transient heat flux, permeability



#### China National Nuclear Corporation



#### **Thermal fatigue**



COLUMN .

# 

#### @Magnum-PSI, 50 eV, 823 K, Te=1.65 eV, ne = $4.73 \times 10^{19}$ m<sup>-3</sup>, Fluence= $1.02 \times 10^{26}$ m<sup>-2</sup>



• CVD-W: a mitigated blistering behavior, lower D retention VS the forged-W.



1000 T

Degradation preferentially occurred on the planes close to (101)



- 1. CVD (chemical vapor deposition)-W on different substrates including Cu, RAFM steel, and graphite are successfully prepared.
- 2. The CVD-W showed an excellent recrystallization resistance and a good thermal fatigue performance. In addition, a mitigated blistering and low D retention characteristics were confirmed. The CVD-W showed a higher D permeability compared to the commercial pure W counterpart.
- 3. The surface degradation induced by steady-state and transient heat flux exhibited a strong grain orientation dependence.
- 4. The large-scale CVD-W/CuCrZr mockups have also been developed. The preparation and heat loading tests of the CVD-W based water-cooled mono-block are undergoing.