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“W/Cu alloy” divertor heat removal component

Reliable joint is required between “W” and “Cu alloy” .
Conventional

However, joint procedure is difficult structure (e.g., ITER)
s°° Large deviation of the CTI? W
ee® W: 4.3 /K To absorb th Intermediate material (Cu)
Cu aIon . 16.5 M/K deviation of Filler material (NiCuMan-37)
/ Cu alloy

PH-Cu
(CuCrzr)

W

Filler material

mere are a lot of disadvantages \

> Degradation of the physical and
mechanical properties of Cu inter
layer by the neutron dose.

» Degradation of the thermal
conductivity due to the multiple
interface between dissimilar materials.

We challenged | Q High manufacturing costs. J
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Advanced brazing technique (ABT)

Natural cooling — Feature 1: Very narrow joint like a microscale welding

Feature 2: Softened layer is spontaneously created

Cross-sectional SEM image
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I. Shoji et al., Surface Technol., Vol.58,
No.12, (2007) 133-137

M. Tokitani et al., Nucl. Fusion 57 (2017) 076009.

During the bonding heat treatment with 960°C, the ODS-Cu (GlidCop®) bulk only
near the bonding surface satisfies the eutectic reaction (Cu-P) for a short time.

. The surface of the ODS-Cu (GlidCop®) bulk is melted, and melted material
tightly sticks to the W bulk through the anchor effect.




Advanced brazing technique (ABT)

Natural cooling — Feature 1: Very narrow joint like a microscale welding

Feature 2: Softened layer is spontaneously created

Cross-sectional SEM image

(=1
oo

Temperature (°C) _

1
700 11712 Eutectic )
reaction

500 &y o >
- =
Qo Q

300|l J
1 1 1 [ 1

Softened layer (~ 500 um)

ODS-Cu
(GlidCop®)

0 10 20 30 40 50 6
Cu mass %o l Cu alloy: ODS-Cu (GlidCop®)

I. Shoji et al., Surface Technol., Vol.58,
No.12, (2007) 133-137

M. Tokitani et al., Nucl. Fusion 57 (2017) 076009.

During the bonding heat treatment with 960°C, the ODS-Cu (GlidCop®) bulk only
near the bonding surface satisfies the eutectic reaction (Cu-P) for a short time.

. The surface of the ODS-Cu (GlidCop®) bulk is melted, and melted material
tightly sticks to the W bulk through the anchor effect.




Contents

2. Advanced Multi-Step Brazing (AMSB)

Requirement for the new type divertor heat removal component

Four conditions for obtaining the joint structure of the new type divertor
heat removal component

Development of the AMSB and fabrication procedures of the new type
divertor heat removal component

Heat removal capability of the new type divertor heat removal component

5/20



Requirement for the “new type divertor heat removal component”

[Structural “mitJ [ Ideal cooling structure T. Tsuneyoshi et al., JSEM 2015, C11-1.
to heat removal L(l) Rectangular-shapedJ [(2) V-shaped staggered rib structure}

Heat |oadi2§ cooling flow path

» Industrially applied technology, e.g., gas
turbine blade etc.

» The swirling turbulent flow is generated
due to the effect of the V-shaped rib
structure.

eat loading

“New type
divertor heat removal component

i , M. Tokitani et al., Nucl. Fusion 61 (2021) 046016.

“Advanced brazing Longitudinal cross-section
technique” is applied

124

The leak-tight joint is difficult
to create in the conventional

technologies. V-shaped staggered rib
structure
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[Four conditions)

1. The joints are completely leak-tight.

The joints have areal contact, not line- or spot-like contact.

The joints withstand against “thermal stress” and “water pressure”.

The joints do not degrade even after a repetitive (brazing) heat treatment.

e N




Leak tight joint method by applying the advanced brazing

@ GlidCop®/GlidCop® § @ SUS/GlidCop® Same method is applied
Uniform compressive load: 0.54 MPa + Developed heat treatment

M. Tokitani et al., Fusion Eng. Des. 148 (2019) 111274.
[ Flow path model ]
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Leak tight joint in an areal condition was achieved.
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Quality of the leak-tight sealing joint

(D GlidCop® / GlidCop® (2 SUS/GlidCop®

M. Tokitani et al., Fusion Eng. Des. 148 (2019) 111274. M. Tokitani et al., J. Nucl. Mater. 538 (2020) 152264.
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» Very narrow bonding layers of ODS-Cu/ODS-Cu and SUS/ODS-Cu were obtained.

» Strength of the bonding layers were as high as the original ODS-Cu (GlidCop®).

» Microstructures and joint strength does not show any sign of the degradation
even after the 2nd time heat treatment.
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side

= 300 { side
Gligc, -dC09® 3 200 cop’
ope| G\ & G\\d
X 100

Tension side Ten5|on side

300 -

200 |

100

0.5% Strain [%] 2% Strain [%]

» Very narrow bonding layers of ODS-Cu/ODS-Cu and SUS/ODS-Cu were obtained.
» Strength of the bonding layers were as high as the original ODS-Cu (GlidCop®).

» Microstructures and joint strength does not show any sign of the degradation
even after the 2nd time heat treatment.




Breakthrough: cleared the four conditions

@ 1. The joints are completely leak-tight.

@ 2. The joints have areal contact, not line- or spot-like contact.

@ 3. The joints withstand against “thermal stress” and “water pressure”.

@ 4. The joints do not degrade even after a repetitive (brazing) heat treatment.

— Judgement:
The “new type divertor heat removal component”

p
[1 Ideal cooling structure

[(1) Rectangular-shaped cooling flow path}

+

[(2) V-shaped staggered rib structure}
o

- can be fabricated 0/2



Advanced Multi-étep Erazing (AMSB) was developed
(1) GlidCop®/GlidCop® 8% (2) SUS/GlidCop® B RVEXIallaf=48% (3) W/GlidCop® B NNl welding]

GHdCopQ\

BNi-6\ _
GlidCop®

Patented: Pipe welding
No. 6528257
No. 6606661

The “new type divertor heat
removal component” was
successfully fabricated.



Advanced Multi-étep Erazing (AMSB) was developed
(1) GlidCr-__ -GlidCop® 8% (2) SUS/GlidCop® BRIV EEI:48% (3) W/GlidCop® BN welding]

Narrow joint width (~3.5 mm)
micro stand edge + Partition wall 5

Patented:

No. 6528257
No. 6606661

Two-step brazing

The “new type divertor heat
removal component” was
successfully fabricated.

M. Tokitani et al., Nucl. Fusion 61 (2021) 046016.




Advantages of AMSB

— Manufacturing advantages:

. The joints are completely leak-tight.

. The joints have areal contact, not line- or spot-like contact.

. The joints withstand against “thermal stress” and “water pressure”.

4. The joints do not degrade even after a repetitive (brazing) heat treatment.

“Structural advantages” can be realized
by “Manufacturing advantages”

— Structural advantages:

: .
ﬁ. Rectangular-shaped cooling flow patm Jeat ?ad|ng
+ V-shaped staggered rib structure

2. Micro stand edge structure

Narrow joint width (~3.5 mm)

3.
\_ +Partition wall )




Extremely high heat removal capability: “30MW/m?
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"Extremely high heat
removal performance

M. Tokitani et al., Nucl. Fusion 61 (2021) 046016.
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Summary (1)

. The concept of the new type divertor heat removal
component was proposed.

. The leak-tight joint method of GlidCop®/GlidCop® and
SUS/GlidCop® was developed by applying the advanced
brazing technique (ABT).

. Advanced Multi-Step Brazing (AMSB) was developed,
and the new type divertor heat removal component was
successfully produced. (patented: No. 6528257, 6606661)

. The new component demonstrated an extremely high
heat removal capability under the ~30 MW/m? steady
state heat loading.
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CVD-W: preparation, purity, TC, and CTE

W/RAFM Steel

i

Bt

« Controllable preparation of CVD-W coatings on different substrates has been achieved.
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cNNE  Thermal stability, transient heat flux, permeability

» Excellent recrystallization « CVD-W: cracking threshold at RT, 0.28-0.33 GW-m72,
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gz ENNE Thermal fatigue

CVD-W/FGM/CuCrZr component Fusion Eng. Des. 88 (2013) 1694-1698
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g'z Eﬁﬁ D plasma exposure, steady-state and transient, mockups
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O Summary (2)

1. CVD (chemical vapor deposition)-W on different substrates
including Cu, RAFM steel, and graphite are successfully prepared.

2. The CVD-W showed an excellent recrystallization resistance and
a good thermal fatigue performance. In addition, a mitigated
blistering and low D retention characteristics were confirmed.
The CVD-W showed a higher D permeability compared to the
commercial pure W counterpart.

3. The surface degradation induced by steady-state and transient
heat flux exhibited a strong grain orientation dependence.

4. The large-scale CVD-W/CuCrZr mockups have also been
developed. The preparation and heat loading tests of the CVD-
W based water-cooled mono-block are undergoing.
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