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Boron injection led to ELM suppression

lb = 0.5 MA, Bt = 2.5 T, Pheat~ 6 MW, USN, grad-B drift 1, toward X-point
Type-l ELMSs, Hogy,2) ~ 1

. EAST #85041 no Boron #85052 with Boron __
B, [a.ul] ‘

« Suppression of ELMs with con
stored energy and density

- Clear drop in D, baseline

- Harmonic mode onset and
saturation
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Real-time impurity powder injection used for ELM conirol,

wall conditioning and power exhaust

*ELM control
— qalter edge stability toward ELM-stable or small ELM regimes
* EAST, KSTAR
-Wall conditioning

— continuously alter wall coatings for improved PMI and core
performance

« EAST, AUG, DIII-D, LHD, W7-X & WEST
Power exhaust

— enhance divertor and boundary power dissipation to heat flux
control

- EAST, AUG, DIII-D

This talk will focus of ELM suppression in EAST
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Impurity Powder Dropper (IPD) on EAST
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- IPD has been used to provide real-time conditioning N Mo wal
- IPD has four reservoirs and enables the injection of multiple
materials
C wall

« On EAST, IPD drops material in the upper X-point
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A. Nagy et al., RSI 89 (2018) 10K121
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ELM suppression with B powder injection:

Regimes and key characteristics

-  Wide range of operation conditions

— RF-only & RF + NBIl heating: 2.8 MW - 7.5 MW
—  Q9s between 4.4 and 7.2 (typical 0.5 MA, 2.5T)
— Density range: 0.25 - 0.85 new

—  With D or He majority

— Both directions of grad-B drift

»  Suppression occurs when a threshold in B injection rate is
crossed
— Increased with heating power  r.maingiet al. IAEA FEC 2021

*  Onset and saturation of mode
—  Multiple harmonics ~ 2-5 kHz fundamental
— Localized near separatrix and drives particle fransport
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ELMs suppression correlates with boron injection

ELMs return
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ldentification of coherent fluctuations with harmonics

in both magnetic and impurity radiations (XUV) spectra

XUV signal is proportional o ne x nz x f(Te) Cross-power magnetic and edge XUV signals
-100  -80 -60 -40 -20 0 -110 -100° 90

25 25
20 20
N i N
E 15 I-m'1\'\!.wvm"hu.-w,‘»mu-"-‘-v'\'y‘w’uw‘l‘mu-wﬂu‘mny’w‘MM\Hl‘l.”I. L = 15
- >
= :
= 310
=10 S
T I
5
5
O == -
0 3000 4000 5000 6000 7000
3 4 5 6 7 Time [ms]

6 ) A. Diallo IAEA-FEC2021 7



Mode appears to be localized near the seperatirix

Using midplane D, emission (BES system with D, filters)
Radial Profile of mode amplitude
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Mode propagates poloidally away from the X-point

X-Point
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Boron-induced mode affects the particle fransport

- Modes are also observed in the divertor using Do and Langmuir probes

- Observation of the modes in lsat suggests particle tfransport
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Identification of three phases during the Boron injection

Phase | Phase Il [Phase
- We use the rms of D, as proxy for — l , .| l!]
. Proxy fro Boron injection A Boron
the Cclumplltude of low frequency 301B.V [a.u] | Threshold
m H
odes ol
- Phase I: Onset of mode 0r
amplitude when B-V reaches a 0 F | | l.
? T [ [ [ : I:'
threshold 4| Dy Envelop [a.u.]
— Mode appears to decrease the :
core W impurity accumulation 3r
Onsetof . ‘
+ Phase ll: Mode amplitude is ~ mode 1 a
constant when boron injection is 0 — Do
interrupted i A
— Existence of a threshold after which : '
mode decreases
- Phase lll: Mode amplitude
decreases at the same rate as ) 3 s 5 6 . o o
the boron emission Time (s)
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Origin of this mode?

- Ablated Boron in X-point produces density perturbation akin of a density
accumulation

- Density perturbation propagates poloidally away from the X-point
- Hypothesis: This perturbation couples to GAM

- Step-wise approach:

- Investigate whether the experimentally observed low-frequency modes can
be GAMs

- simple two-fluid approach to establish basic plausibility
- Extend analysis using a high-fidelity gyrokinetic code XGC

- Simple 2D toy model to assess the impurity-induced GAM driving
mechanism

- Can we explain the multiple harmonics?
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Spectrum of geodesic acoustic mode and ion sound wave

(ISW) frequencies

-Two-fluid calculation in the limit k. — 0

*Ratios of perpendicular (ExB flow) to parallel kinetic energy of the
eigenmode, i.e., GAM vs. ISW character

Primary GAM candidate Safety factor g

P
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Model Assumptions

Simulation performed with XGC
— Total-f code
—  Redlistic geometry including scrape-off layer
— Here: axisymmetric electric field > tfurbulence excluded

We assume excitation of GAMs with the powder dropper depends
on the position of the dropper rather than the type impurity used

- only two species, deuterium ions and electrons are included

No ablation model was included - we assumed that density
perturbations due the ablation is translated to E, variations
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GAMs are excited by adding a bias voltage to the self-consistent flux-surface

averaged (zonal) elecirostatic potential instead of a pressure perturbation

Applied Er kicks to drive the GAMs

- Extracted the flux-surface averaged radial electric field <Er>
- Slow <Er> temporal evolution due to neoclassical fransport is removed

Time (ms)

for further analysis
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Consistency between the radial electric field and the GAM-

ISW spectra

- For each flux-surface g, we fit an exponentially damped sinusoidal
oscillation to the (Er)(y) data
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Observed damping is most likely due to (collisionless) Landau damping in
steep pedestal gradient (finite-k, effect, e.g. Xu et al., Nuclear Fusion 2009)

- The high gradient of the GAM frequency in the pedestal leads to fast
iIncreasing radial wavenumbers k.
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Poloidal siructure of a GAM mode generated with

continuous drive at 5 kHz peaks very close to the X-point
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Can density perturbation induced by the powder dropper generate

an n=1 mode, which could nonlinearly couple to a n=0 mode?

- Pathways that could enable such mechanism
— through the velocity space distribution of the injected particles

- which is different from the neoclassical equilibbrium distribution
and leads to excess radial fransport

— through direct coupling to the m=1 pressure perturbation of the
GAM

Focus on the possibility of direct coupling:
— Can a confinuous particle source produce an oscillatione
— Can such oscillation couple to an axisymmetric mode?¢
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Simple 2D model produces n=1 oscillation with harmonics

from localized continuous source

- Evolve density in toy model representing toroidal rotation, diffusion

along field lines, and a localized parficle source
y and z represent the poloidal and toroidal direction

» Periodic boundary conditions

diffusion of the density injected by the source
along the magnetic field lines

5n(y,3,t) On 62
S =V 5 +D =+ S

divergence of
the (rigid body) toroidal flow

particle source

2 ()]

S(y,z) = Nexp
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Principal mode at toroidal rotation frequency with

harmonics due to source localization

Roughly Gaussian cross

section in poloidal n=1 mode at toroidal
direction B rotation frequency
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Principal mode at toroidal rotation frequency with

harmonics due to source localization
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Initial modeling of the boron powder induced of edge mode using
neoclassical XGCa

Results:
M Observed frequencies in the pedestal are consistent with GAM

M Continuous injection of powder can lead to multiple harmonics
modes as observed ion experiments
* Localized and narrow powder drops lead to multiple harmonics

* Broad source lead 1o one mode consistent with CD4 experiments

OWhile the n=1 mode can be excited using continuous powder
iInjection, coupling to Nn=0 is unclear

- Presumably due to the simplified geomeitry - might need his
fidelity simulation in realistic geometry

Future work: extension of simulation coupling boron ablation and
turbulence in XGC
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Magnetic specirogram suggests multiple modes

Multiple mode are observe during
Boron-induced ELM suppressed
phase

ELM suppressed phase exhibit both
low and high frequency modes

Dynamics of the frequencies
appear to show multiple
dependencies with density?
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