28th IAEA Fusion Energy Conference (FEC 2020), Virtual Event: 10-15 May 2021

Experimental investigation and gyrokinetic simulations of multi-scale electron heat transport in JET, AUG and TCV

<u>A. Mariani</u>, N. Bonanomi, P. Mantica, C. Angioni, F.J. Casson, J. Citrin, T. Goerler, D. Keeling, E. Lerche, O. Sauter, M. Sertoli, G. Staebler, D. Taylor, A. Thorman, Eurofusion JET1 contributors, Eurofusion MST1 contributors, ASDEX Upgrade team, TCV team and ITPA transport & confinement group

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the European commission and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

- Introduction: ETGs impact on electron heat transport;
- Experimental results at JET, AUG and TCV;
- Nonlinear ion-scale gyrokinetic simulations (GENE);
- Nonlinear multi-scale gyrokinetic simulations;
- Conclusions.

ETG modes could be detrimental to fusion
performances in electron heated tokamaksImage: Comparison of the second second

- Ion scales: Trapped Electron Modes (TEM): driven by $\
 abla \ln(T_e)$, $abla \ln(n_e)$
- Electron scales: Electron Temperature Gradient (ETG) modes: driven by $\,
 abla \ln(T_e)$

Linear ETG threshold:

[F. Jenko et al. PoP 2001]

$$\left[\frac{R}{L_{Te}}\right]_{crit.} \propto \left(1 + Z_{\text{eff}} \frac{T_e}{T_i}\right)$$
$$R/L_{Te} = -R\nabla T_e \cdot \hat{r}/T_e$$

Alberto Mariani | 28th IAEA Fusion Energy Conference (FEC 2020), 10-15 May 2021 | Page 2

Alberto Mariani | 28th IAEA Fusion Energy Conference (FEC 2020), 10-15 May 2021 | Page 2

Heat transport:

Temperature profile stiffness:

slope of the turbulent branch

Temperature profile stiffness:

slope of the turbulent branch

JET

ETGs: experiments and numerical simulations

Experiments:

Two independent methods

→ reconstruct q_{e,gB} vs R/L_{Te} : evaluate: slope (detect ETGs)

- **Heat flux scan:** change proportion of heating power (two radii): two q_{e,gB} vs R/L_{Te} points;
- Perturbative analysis: modulate heating power at one radius heat wave: local stiffness;

ETGs: experiments and numerical simulations

Experiments:

Two independent methods

→ reconstruct q_{e,gB} vs R/L_{Te} : evaluate: slope (detect ETGs)

- Heat flux scan: change proportion of heating power (two radii): two qe,gB vs R/LTe points;
- **Perturbative analysis**: modulate heating power at one radius heat wave: local stiffness;

Simulations:

Girokinetic simulations (micro-turbulence, scales: ~ion-electron Larmor radius)

Heavy, based on gyrokinetic (GK) eqs. In 5dim. phase space

(from http://genecode.org)

EUROfusion and **ITPA** Transport & Confinement group:

Extensive effort: analyse **data** produced by **different tokamaks** investigating ETG contribution to the heat transport:

comparing: experiments

numerical simulations

EUROfusion and **ITPA** Transport & Confinement group:

Extensive effort: analyse **data** produced by **different tokamaks** investigating **ETG** contribution to **the heat transport**:

comparing: experiments *_____* numerical simulations

Here: comparison of dedicated pulses from the following tokamaks:

- TCV: Swiss Plasma Center (SPC)-EPFL, Lausanne, Switzerland
- AUG: Max-Planck-Institut für Plasmaphysik (IPP), Garching, Germany
- JET: Culham, United Kingdom

EUROfusion and **ITPA** Transport & Confinement group:

Extensive effort: analyse **data** produced by **different tokamaks** investigating **ETG** contribution to **the heat transport**:

comparing: experiments <-----> numerical simulations

Here: comparison of dedicated pulses from the following tokamaks:

- TCV: Swiss Plasma Center (SPC)-EPFL, Lausanne, Switzerland
- AUG: Max-Planck-Institut für Plasmaphysik (IPP), Garching, Germany
- JET: Culham, United Kingdom

Analysis: same radial position: ρ_{tor} =0.5:

TCV

[Mariani A. et al., NF (2019)]

- L-modes, $B_0 = 1.41 T$, $I_p = 170 kA$;
- Heat flux scan: vary ECH power (~0.4 0.7 MW) deposition on- vs off-axis;
- Perturbative analysis: ECH steady and modulated;
- Each pulse: different phases with different proportion of NBI(~1 MW) /ECH power to vary T_e/T_i.

- L-modes, $B_0 = 1.41 T$, $I_p = 170 kA$;
- Heat flux scan: vary ECH power (~0.4 0.7 MW) deposition on- vs off-axis;
- Perturbative analysis: ECH steady and modulated;
- Each pulse: different phases with different proportion of NBI(~1 MW) /ECH power to vary T_e/T_i.

AUG

[Ryter F. et al., NF (2019)]

- ECH only, mixed NBI-ECH (Te[~]Ti), and NBI only cases:
- ECH modulation: mixed NBI-ECH with ECH on-axis

Adapted from [Mariani A. et al., NF (2019)]

TCV

- ECH only, mixed NBI-ECH (Te[~]Ti), and NBI only cases:
- ECH modulation: mixed NBI-ECH with ECH on-axis

AUG

- All experimental cases (Te~Ti);
- ECH modulation: highest q_{e,gB} point

JET

95457

- **ECH only**, mixed NBI-ECH • (Te[~]Ti), and **NBI only** cases:
- ECH modulation: mixed • NBI-ECH with ECH on-axis

AUG

- All experimental cases $(T_e^T_i);$
- ECH modulation: highest q_{e,g}_B point

- All experimental cases (Te/Ti range);
- No RF modulation;

Т /Т~1

T /T~1.3

T /T~0.9

80

60

40

20

0

q_{e,gB}

<u>ρ_{tor}=0.5</u> 5 10 15 R/L_{Te} [Mantica. P. et al., to be submitted]

 Steady state: TEM-compatible moderate stiffness;

[Bonanomi N. et al., to be submitted]

[Mantica. P. et al., to be submitted]

- Steady state: TEM-compatible moderate stiffness;
- ECH modulation: ETG-like stiffness for mixed NBI-ECH case (Te~Ti).

Adapted from [Mariani A. et al., NF (2019)]

- Steady state: TEM-compatible moderate stiffness;
- ECH modulation: ETG-like stiffness for mixed NBI-ECH case (Te~Ti).

[Bonanomi N. et al., to be submitted]

 Steady state: TEM-compatible moderate stiffness;

[Mantica. P. et al., to be submitted]

Adapted from [Mariani A. et al., NF (2019)]

- Steady state: TEM-compatible moderate stiffness;
- ECH modulation: ETG-like stiffness for mixed NBI-ECH case (Te~Ti).

- Steady state: TEM-compatible moderate stiffness;
 - ECH modulation: ETG-compatible stiffness for the largest q_{e,gB} point.

[Mantica. P. et al., to be submitted]

Adapted from [Mariani A. et al., NF (2019)]

- Steady state: TEM-compatible moderate stiffness;
- ECH modulation: ETG-like stiffness
 for mixed NBI-ECH case (Te~Ti).

[Bonanomi N. et al., to be submitted]

- Steady state: TEM-compatible moderate stiffness;
 - ECH modulation: ETG-compatible stiffness for the largest q_{e,gB} point.

 Only steady state: TEMcompatible

JET

Adapted from [Mariani A. et al., NF (2019)]

- Steady state: TEM-compatible moderate stiffness;
- ECH modulation: ETG-like stiffness
 for mixed NBI-ECH case (Te~Ti).

[Bonanomi N. et al., to be submitted]

- Steady state: TEM-compatible moderate stiffness;
 - ECH modulation: ETG-compatible stiffness for the largest q_{e,gB} point.

[Mantica. P. et al., to be submitted]

 Only steady state: TEMcompatible except for highest q_{e,gB} points with Te[~]Ti (ETG wall?).

Experimental results: electron heat flux scans

Adapted from [Mariani A. et al., NF (2019)]

- Steady state: TEM-compatible moderate stiffness;
- ECH modulation: ETG-like stiffness
 for mixed NBI-ECH case (Te~Ti).

[Bonanomi N. et al., to be submitted]

- Steady state: TEM-compatible moderate stiffness;
 - ECH modulation: ETG-compatible stiffness for the largest q_{e,gB} point.

[Mantica. P. et al., to be submitted]

 Only steady state: TEMcompatible except for highest qe,gB points with Te~Ti (ETG wall?).

Comparison: possible ETGs role: cases with balanced electron/ion-heating: Te~Ti and large R/LTe .

Alberto Mariani | 28th IAEA Fusion Energy Conference (FEC 2020), 10-15 May 2021 | Page 7

• Flux-tube (radially local) version of GENE;

- Flux-tube (radially local) version of GENE;
- Realistic geometries: magnetic equilibria from CHEASE [Lutjens H. et al., Comput. Phys. Commun. (1999)] (TCV) and EFIT [Brix M. et al., Rev. Sci. Instrum. 79 (2008)] (AUG, JET);

- Flux-tube (radially local) version of GENE;
- Realistic geometries: magnetic equilibria from CHEASE [Lutjens H. et al., Comput. Phys. Commun. (1999)] (TCV) and EFIT [Brix M. et al., Rev. Sci. Instrum. 79 (2008)] (AUG, JET);
- Collisions;

- Flux-tube (radially local) version of GENE;
- Realistic geometries: magnetic equilibria from CHEASE [Lutjens H. et al., Comput. Phys. Commun. (1999)] (TCV) and EFIT [Brix M. et al., Rev. Sci. Instrum. 79 (2008)] (AUG, JET);
- Collisions;
- Finite-βe (electromagnetic) effects;

- Flux-tube (radially local) version of GENE;
- Realistic geometries: magnetic equilibria from CHEASE [Lutjens H. et al., Comput. Phys. Commun. (1999)] (TCV) and EFIT [Brix M. et al., Rev. Sci. Instrum. 79 (2008)] (AUG, JET);
- Collisions;
- Finite-βe (electromagnetic) effects;
- Impurities: considered for TCV and JET; neglected for AUG for consistency with the multiscale (Z_{eff}=1 for lack of computational resources);

- Flux-tube (radially local) version of GENE;
- Realistic geometries: magnetic equilibria from CHEASE [Lutjens H. et al., Comput. Phys. Commun. (1999)] (TCV) and EFIT [Brix M. et al., Rev. Sci. Instrum. 79 (2008)] (AUG, JET);
- Collisions;
- Finite-βe (electromagnetic) effects;
- Impurities: considered for TCV and JET; neglected for AUG for consistency with the multiscale (Z_{eff}=1 for lack of computational resources);
- Fast ions (FI): considered for TCV, neglected for AUG and JET (much lower FI density fraction);

- Flux-tube (radially local) version of GENE;
- Realistic geometries: magnetic equilibria from CHEASE [Lutjens H. et al., Comput. Phys. Commun. (1999)] (TCV) and EFIT [Brix M. et al., Rev. Sci. Instrum. 79 (2008)] (AUG, JET);
- Collisions;
- Finite-βe (electromagnetic) effects;
- Impurities: considered for TCV and JET; neglected for AUG for consistency with the multiscale (Z_{eff}=1 for lack of computational resources);
- Fast ions (FI): considered for TCV, neglected for AUG and JET (much lower FI density fraction);
- ExB shearing: considered for TCV; neglected for AUG and JET (much smaller values).

 GENE (diamonds) compared with exp. points and ECH modulation

Adapted from [Mariani A. et al., NF (2019)]

 GENE (diamonds) compared with exp. points and ECH modulation

Adapted from [Mariani A. et al., NF (2019)]

• Same as TCV, but also looking at the ion channel;

[Bonanomi N. et al., to be submitted]

[Bonanomi N. et al., to be submitted]

nitted] Adapted from [Mantica P. et al., to be submitted]

Adapted from [Mariani A. et al., NF (2019)]

Adapted from [Mariani A. et al., NF (2019)]

[Bonanomi N. et al., to be submitted] Adapted from [Mantica P. et al., to be submitted]

Adapted from [Mariani A. et al., NF (2019)]

[Bonanomi N. et al., to be submitted] Adapted from [Mantica P. et al., to be submitted]

90

Adapted from [Mariani A. et al., NF (2019)]

- ECH only: flux levels and • stiffness explained by ionscales;
- Mixed NBI-ECH: ion-scales • stabilised by a sinergy of FI and ExB: both **fluxes** and **stiffness** are under-estimated.

[Bonanomi N. et al., to be submitted] Adapted from [Mantica P. et al., to be submitted]

Adapted from [Mariani A. et al., NF (2019)]

- ECH only: flux levels and stiffness explained by ionscales;
- Mixed NBI-ECH: ion-scales stabilised by a sinergy of FI and ExB: both fluxes and stiffness are under-estimated.

[Bonanomi N. et al., to be submitted]

Adapted from [Mantica P. et al., to be submitted]

 First: qi is matched varying R/LTi,

Adapted from [Mariani A. et al., NF (2019)]

- ECH only: flux levels and stiffness explained by ionscales;
- Mixed NBI-ECH: ion-scales stabilised by a sinergy of FI and ExB: both fluxes and stiffness are under-estimated.

[Bonanomi N. et al., to be submitted]

Adapted from [Mantica P. et al., to be submitted]

 First: qi is matched varying R/LTi, then: two runs varying R/LTe;

Adapted from [Mariani A. et al., NF (2019)]

- ECH only: flux levels and stiffness explained by ionscales;
- Mixed NBI-ECH: ion-scales stabilised by a sinergy of FI and ExB: both fluxes and stiffness are under-estimated.

- First: qi is matched varying R/LTi, then: two runs varying R/LTe;
- GENE slightly underpredicts the flux, but strongly underpredicts the stiffness from ECH modulation.

Adapted from [Mantica P. et al., to be submitted]

Adapted from [Mariani A. et al., NF (2019)]

- ECH only: flux levels and stiffness explained by ionscales;
- Mixed NBI-ECH: ion-scales stabilised by a sinergy of FI and ExB: both fluxes and stiffness are under-estimated.

- First: qi is matched varying R/LTi, then: two runs varying R/LTe;
- GENE slightly underpredicts the flux, but strongly underpredicts the stiffness from ECH modulation.

Adapted from [Mantica P. et al., to be submitted]

Adapted from [Mariani A. et al., NF (2019)]

- ECH only: flux levels and stiffness explained by ionscales;
- Mixed NBI-ECH: ion-scales stabilised by a sinergy of FI and ExB: both fluxes and stiffness are under-estimated.

[Bonanomi N. et al., to be submitted]

- First: qi is matched varying R/LTi, then: two runs varying R/LTe;
- GENE slightly underpredicts the flux, but strongly underpredicts the stiffness from ECH modulation.

Adapted from [Mantica P. et al., to be submitted]

• lons are very stiff

JET

Adapted from [Mariani A. et al., NF (2019)]

- ECH only: flux levels and stiffness explained by ionscales;
- Mixed NBI-ECH: ion-scales stabilised by a sinergy of FI and ExB: both fluxes and stiffness are under-estimated.

[Bonanomi N. et al., to be submitted]

- First: qi is matched varying R/LTi, then: two runs varying R/LTe;
- GENE slightly underpredicts the flux, but strongly underpredicts the stiffness from ECH modulation.

Adapted from [Mantica P. et al., to be submitted]

 Ions are very stiff and R/LTi also impacts qe (similar for R/Lne);

Alberto Mariani | 28th IAEA Fusion Energy Conference (FEC 2020), 10-15 May 2021 | Page 10

Adapted from [Mariani A. et al., NF (2019)]

- ECH only: flux levels and stiffness explained by ionscales;
- Mixed NBI-ECH: ion-scales stabilised by a sinergy of FI and ExB: both fluxes and stiffness are under-estimated.

[Bonanomi N. et al., to be submitted]

- First: qi is matched varying R/LTi, then: two runs varying R/LTe;
- GENE slightly underpredicts the flux, but strongly underpredicts the stiffness from ECH modulation.

Adapted from [Mantica P. et al., to be submitted]

- Ions are very stiff and R/LTi also impacts qe;
- However: they do not impact the stiffness;

Adapted from [Mariani A. et al., NF (2019)]

- ECH only: flux levels and stiffness explained by ionscales;
- Mixed NBI-ECH: ion-scales stabilised by a sinergy of FI and ExB: both fluxes and stiffness are under-estimated.

[Bonanomi N. et al., to be submitted]

- First: qi is matched varying R/LTi, then: two runs varying R/LTe;
- GENE slightly underpredicts the flux, but strongly underpredicts the stiffness from ECH modulation.

Adapted from [Mantica P. et al., to be submitted]

- Ions are very stiff and R/LTi also impacts qe;
- However: they do not impact the stiffness;
- Possible to match q_{e,gB} but not the stiffness with ion-scale runs.

• Cases with Te[~]Ti: ion scales —> not sufficient to explain both exp. flux levels and stiffness;

• Cases with Te~Ti: ion scales —> not sufficient to explain both exp. flux levels and stiffness;

• **Multi-scale NL GENE runs** for AUG and JET (TCV: 'global' effects could play a role and a global multi-scale run was not affordable);

• Cases with Te[~]Ti: ion scales — not sufficient to explain both exp. flux levels and stiffness;

 Multi-scale NL GENE runs for AUG and JET (TCV: 'global' effects could play a role and a global multi-scale run was not affordable);

• Collisions, electromagnetic effects and real electron/ion mass ratio are kept;

• Cases with Te~Ti: ion scales — not sufficient to explain both exp. flux levels and stiffness;

• **Multi-scale NL GENE runs** for AUG and JET (TCV: 'global' effects could play a role and a global multi-scale run was not affordable);

• Collisions, electromagnetic effects and real electron/ion mass ratio are kept;

• JET case ———— impurities: taken into account.

• Impact of ETGs on q_e ($k_y \rho_s > 1$): increases with increasing R/LTe:

moderate/large (~32%) at exp. R/LTe=8

JET

• Impact of ETGs on q_e ($k_y \rho_s > 1$): increases with increasing R/LTe:

moderate/large (~32%) at exp. R/LTe=8 _____ large (~59%) at R/LTe=11;

JET

• Impact of ETGs on q_e ($k_y \rho_s > 1$): increases with increasing R/LTe:

moderate/large (~32%) at exp. R/LTe=8 and large (~59%) at R/LTe=11;

• Multi-scale stiffness: high <----- well aligned with the ECH modulation result;

Alberto Mariani | 28th IAEA Fusion Energy Conference (FEC 2020), 10-15 May 2021 | Page 12

• TGLF [Staebler G.M. et al. POP 2007] standalone R/LTe scans with and without impurities

test the effect of Z_{eff} on the 'ETG wall' position: **non-negligible**.

JET

R/L⊤i=5.77 (qi at the upper end of the exp. error bar)

• Impact of ETGs on qe: negligible (~5%) at exp. R/LTe=9

• Impact of ETGs on qe: negligible (~5%) at exp. R/LTe=9 **moderate** (~18%) at R/LTe=14;

- Impact of ETGs on qe: negligible (~5%) at exp. R/LTe=9 **moderate** (~18%) at R/LTe=14;
- Multi-scale stiffness: moderate, it still does not explain the exp. stiffness (run at R/LTe=11 with reduced R/LTi: ongoing);

- TCV, mixed NBI-ECH case: a synergy of fast ions and ExB shearing, stabilizing the TEMdominant ion scales, allows ETGs to possibly play a role;

- TCV, mixed NBI-ECH case: a synergy of fast ions and ExB shearing, stabilizing the TEMdominant ion scales, allows ETGs to possibly play a role;

- TCV, mixed NBI-ECH case: a synergy of fast ions and ExB shearing, stabilizing the TEMdominant ion scales, allows ETGs to possibly play a role;
- High impact of impurities for JET case: more results on the impact of impurities on ETGs are needed;

- TCV, mixed NBI-ECH case: a synergy of fast ions and ExB shearing, stabilizing the TEMdominant ion scales, allows ETGs to possibly play a role;
- High impact of impurities for JET case: more results on the impact of impurities on ETGs are needed;
- Need of exp. measurements of density and temperature fluctuations at electron scales.

Backup slide: simulations input parameters

					JET
	TCV ECH	TCV ECH+NBI	TCV NBI	AUG	
	(59113)	(59113)	(59113)	(31506)	(95457)
T_e/T_i	3.04	~1	1.16	~1	~1
Z _{eff}	2.50	2.80	2.80	1.4	1.5
R/L_{Te}	10.59	10.20	8.71	8	9
R/L_{Ti}	5.94	5.55	15.07	6.5	4.59
R/L_{n_e}	3.69	4.85	6.07	0.91	3.12
q	1.65	1.34	1.42	2.07	1.82
ŝ	0.99	1.19	1.14	6.85	1.05
$\beta_{e} [10^{-3}]$	2.01	2.37	1.54	5	1.12
$\nu_c \ [10^{-3}]$	0.91	1.33	1.77	1.87	0.57
$\nu_{\rm F} [c_{\rm c}/R]$	~0	0.14	0.34	0.04	~0

TABLE 1. Main plasma parameters for the analised pulses at $\rho_{tor} = 0.5$

JET

Backup slide: Linear multi-scale GK simulations

Simple criterion: ETGs impact q_e if γ/k_y is larger at electron scales (ETGs) [Staebler, G.M. et al., NF (2017)]:

ETG impact: mixed
ET

- NBI-ECH case (Te~Ti);
- Due to **FI stabilising** TEMs at **ion scales**.

- ETG role for R/LTe>6 ;
- (lower boundary since Z_{eff}=1<1.4=Z_{eff,exp.} in the simulations).

ETG role: R/Lτε>**11** when R/Lτi=5.77, **R/ Lτε>9** when R/ Lτi=5.17.